TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141463 times)
  2. FAT32 Library (74306 times)
  3. Network Ethernet Library (58850 times)
  4. USB Device Library (48918 times)
  5. Network WiFi Library (44679 times)
  6. FT800 Library (44216 times)
  7. GSM click (30933 times)
  8. mikroSDK (29813 times)
  9. PID Library (27414 times)
  10. microSD click (27352 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Opto 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optocoupler

Downloaded: 389 times

Not followed.

License: MIT license  

Opto 2 Click is a galvanic isolator Click board™, used to provide an optical isolation of sensitive microcontroller (MCU) pins, when operated by external signals.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Opto 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Opto 2 Click" changes.

Do you want to report abuse regarding "Opto 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Opto 2 Click

Opto 2 Click is a galvanic isolator Click board™, used to provide an optical isolation of sensitive microcontroller (MCU) pins, when operated by external signals.

opto2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Opto2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Opto2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void opto2_cfg_setup ( opto2_cfg_t *cfg );

  • Initialization function.

    OPTO2_RETVAL opto2_init ( opto2_t ctx, opto2_cfg_t cfg );

Example key functions :

  • OUT1 Check function.

    uint8_t opto2_check_out1 ( opto2_t *ctx );

  • OUT2 Check function.

    uint8_t opto2_check_out2 ( opto2_t *ctx );

  • OUT3 Check function.

    uint8_t opto2_check_out3 ( opto2_t *ctx );

Examples Description

This application used to provide an optical isolation of sensitive microcontroller.

The demo application is composed of two sections :

Application Init

Initializes device selects the outputs (OUT1 - OUT4) which state be checked.


void application_init ( void )
{
    log_cfg_t log_cfg;
    opto2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );

    opto2_cfg_setup( &cfg );
    OPTO2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    opto2_init( &opto2, &cfg );

    log_info( &logger, "---- Application Init ----" );

    opto2_set_logger( 1, 1, 0, 0 );
    log_printf( &logger, "OPTO 2 is initialized \r\n" );
    log_printf( &logger, "" );
    Delay_ms ( 200 );
}

Application Task

Performs the check procedure for selected outputs and logs the states from that outputs on USB UART. Repeat the check procedure every 2 seconds.


void application_task ( void )
{
    tmp = 1;

    for ( cnt = 0; cnt < 4; cnt++ )
    {
        switch ( sel_output & tmp )
        {
            case 0x01 :
            {
                check_output = opto2_check_out1( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT1 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT1 is high %d\r\n" );
                }
                break;
            }
            case 0x02 :
            {
                check_output = opto2_check_out2( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT2 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT2 is high %d\r\n" );
                }
                break;
            }
            case 0x04 :
            {
                check_output = opto2_check_out3( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT3 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT3 is high %d\r\n" );
                }
                break;
            }
            case 0x08 :
            {
                check_output = opto2_check_out4( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT4 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT4 is high %d\r\n" );
                }
                break;
            }
            default :
            {
                break;
            }
        }

    tmp <<= 1;
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Opto2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Temp-Hum 14 click

5

Temp &amp; Hum 14 Click is a compact add-on board that contains one of the smallest and most accurate humidity and temperature sensors on the market. This board features the HTU31D, a highly accurate digital relative humidity sensor with temperature output from TE Connectivity Measurement Specialties.

[Learn More]

WIZFI360 Click

0

WIZFI360 Click is a compact add-on board for reliable WiFi connectivity in industrial applications. This board features the WIZFI360, a WiFi module from WIZnet, known for its low power consumption and full compliance with IEEE802.11 b/g/n standards. The board supports SoftAP, Station, and SoftAP+Station modes, operates within the frequency range of 2400MHz to 2483.5MHz, and offers a versatile serial port baud rate of up to 2Mbps. It features WPA_PSK and WPA2_PSK encryption for secure communication, configurable operating channels from 1 to 13, and the ability to handle up to 5 simultaneous TCP/UDP links.

[Learn More]

CXPI click

5

CXPI Click is a compact add-on board that contains a transceiver that supports the next-generation automotive communication protocol. This board features the BD41000AFJ-C, a transceiver for the CXPI (Clock Extension Peripheral Interface) communication from Rohm Semiconductor.

[Learn More]