TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141969 times)
  2. FAT32 Library (75189 times)
  3. Network Ethernet Library (59426 times)
  4. USB Device Library (49423 times)
  5. Network WiFi Library (45229 times)
  6. FT800 Library (44840 times)
  7. GSM click (31400 times)
  8. mikroSDK (30374 times)
  9. microSD click (27741 times)
  10. PID Library (27596 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Opto 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optocoupler

Downloaded: 441 times

Not followed.

License: MIT license  

Opto 2 Click is a galvanic isolator Click board™, used to provide an optical isolation of sensitive microcontroller (MCU) pins, when operated by external signals.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Opto 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Opto 2 Click" changes.

Do you want to report abuse regarding "Opto 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Opto 2 Click

Opto 2 Click is a galvanic isolator Click board™, used to provide an optical isolation of sensitive microcontroller (MCU) pins, when operated by external signals.

opto2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Opto2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Opto2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void opto2_cfg_setup ( opto2_cfg_t *cfg );

  • Initialization function.

    OPTO2_RETVAL opto2_init ( opto2_t ctx, opto2_cfg_t cfg );

Example key functions :

  • OUT1 Check function.

    uint8_t opto2_check_out1 ( opto2_t *ctx );

  • OUT2 Check function.

    uint8_t opto2_check_out2 ( opto2_t *ctx );

  • OUT3 Check function.

    uint8_t opto2_check_out3 ( opto2_t *ctx );

Examples Description

This application used to provide an optical isolation of sensitive microcontroller.

The demo application is composed of two sections :

Application Init

Initializes device selects the outputs (OUT1 - OUT4) which state be checked.


void application_init ( void )
{
    log_cfg_t log_cfg;
    opto2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );

    opto2_cfg_setup( &cfg );
    OPTO2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    opto2_init( &opto2, &cfg );

    log_info( &logger, "---- Application Init ----" );

    opto2_set_logger( 1, 1, 0, 0 );
    log_printf( &logger, "OPTO 2 is initialized \r\n" );
    log_printf( &logger, "" );
    Delay_ms ( 200 );
}

Application Task

Performs the check procedure for selected outputs and logs the states from that outputs on USB UART. Repeat the check procedure every 2 seconds.


void application_task ( void )
{
    tmp = 1;

    for ( cnt = 0; cnt < 4; cnt++ )
    {
        switch ( sel_output & tmp )
        {
            case 0x01 :
            {
                check_output = opto2_check_out1( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT1 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT1 is high %d\r\n" );
                }
                break;
            }
            case 0x02 :
            {
                check_output = opto2_check_out2( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT2 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT2 is high %d\r\n" );
                }
                break;
            }
            case 0x04 :
            {
                check_output = opto2_check_out3( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT3 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT3 is high %d\r\n" );
                }
                break;
            }
            case 0x08 :
            {
                check_output = opto2_check_out4( &opto2 );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT4 is low %d\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT4 is high %d\r\n" );
                }
                break;
            }
            default :
            {
                break;
            }
        }

    tmp <<= 1;
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Opto2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MCP2517FD Click

0

MCP2517FD Click is a complete CAN solution which carries the MCP2517FD CAN FD controller and ATA6563 high-speed CAN transceiver from Microchip, as well as a DB9 9-pin connector.

[Learn More]

DC Motor 16 Click

0

DC Motor 16 Click is a compact add-on board that contains a high-performance single phase reversible DC motor drive with speed control. This board features the ZXBM5210, a fully-featured DC motor drive solution with an average current capability of up to 700mA from Diodes Incorporated. The ZXBM5210 has several modes of operations selected by two GPIO pins, has a wide supply voltage range from 3V to 18V, and low power consumption.

[Learn More]

MUX 5 Click

0

MUX 5 Click is a compact add-on board that contains a precise multiplexing solution. This board features the MAX14661, a serially controlled, dual-channel analog multiplexer from Analog Devices, allowing any of the 16 pins to be connected to either common pin simultaneously in any combination. The MAX14661 features Beyond-the-Rails™ capability that allows ±5.5V signals to be passed with any supply configuration alongside a configurable host interface that supports SPI and I2C serial communications. Both modes provide individual control of each independent switch so that any combination of switches can be applied.

[Learn More]