TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139059 times)
  2. FAT32 Library (71589 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29774 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Opto Encoder 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 152 times

Not followed.

License: MIT license  

Opto Encoder 2 Click is a linear incremental optical sensor/encoder Click which can be used for the movement or rotation encoding.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Opto Encoder 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Opto Encoder 2 Click" changes.

Do you want to report abuse regarding "Opto Encoder 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Opto Encoder 2 Click

Opto Encoder 2 Click is a linear incremental optical sensor/encoder Click which can be used for the movement or rotation encoding.

optoencoder2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the OptoEncoder2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for OptoEncoder2 Click driver.

Standard key functions :

  • optoencoder2_cfg_setup Config Object Initialization function.

    void optoencoder2_cfg_setup ( optoencoder2_cfg_t *cfg ); 
  • optoencoder2_init Initialization function.

    err_t optoencoder2_init ( optoencoder2_t *ctx, optoencoder2_cfg_t *cfg );

Example key functions :

  • optoencoder2_pwm_get Getting PWM pin state

    uint8_t optoencoder2_pwm_get ( optoencoder2_t *ctx );
  • optoencoder2_int_get Getting INT pin state

    uint8_t optoencoder2_int_get ( optoencoder2_t *ctx );
  • optoencoder2_get_position Getting encoder position

    int32_t optoencoder2_get_position ( optoencoder2_t *ctx );

Examples Description

This application is used to encode motion or rotation.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver and resets encoder counter to 0 (zero).


void application_init ( void )
{
    log_cfg_t log_cfg;
    optoencoder2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.
    optoencoder2_cfg_setup( &cfg );
    OPTOENCODER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    optoencoder2_init( &optoencoder2, &cfg );

    optoencoder2_zero_counter( &optoencoder2 );
}

Application Task

If motion is detected - encoder increments or decrements position on each rising edge on Channel A (INT pin) and logs encoder position.


void application_task ( )
{
    int32_t encoder_position = 0;
    uint8_t stop_flag = 0;

    stop_flag = optoencoder2_isr( &optoencoder2, 100 );
    encoder_position = optoencoder2_get_position( &optoencoder2 );

    if ( stop_flag == 0 )
    {
        log_printf( &logger, "Position: %ld \r\n", encoder_position );
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.OptoEncoder2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AccelPressure Click

0

Accel&Pressure Click is a compact add-on board representing a rate-of-climb sensing solution for your application. This board features the FXLS8974CF, a 3-axis low-g accelerometer, and the MPL3115A2, a precision pressure sensor with altimetry, both from NXP Semiconductor. Those two sensors are high-performance, low-power devices covering all of Earth's surface elevations. By combining the acceleration and the barometric pressure data, you can easily determine the vertical velocity (the rate of climb) of the device on which the Accel&Pressure Click is integrated.

[Learn More]

Brushless 25 Click

0

Brushless 25 Click is a compact add-on board that controls brushless DC (three-phase BLDC) motors with any MCU. This board features the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It provides three individually controllable drivers intended to drive a three-phase BLDC motor, solenoids, or other loads.

[Learn More]

HVAC click

5

HVAC Click is a compact add-on board that contains Sensirion’s next-generation miniature CO2 sensor. This board features the SCD41, a carbon dioxide sensor build on the photoacoustic sensing principle, and Sensirion’s patented PASens® and CMOSens® technology to offer high accuracy at a minor form factor. On-chip signal compensation is realized with the build-in humidity and temperature sensor. It operates within a specified range from 400 to 5’000 ppm, configurable through the I2C interface with a single shot mode supported. This Click board™ is also suitable for indoor air quality applications using an additional SPS30 that allows smart ventilation systems to regulate ventilation in the most energy-efficient and human-friendly way, maintaining low CO2 concentration for a healthy, productive environment.

[Learn More]