TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139060 times)
  2. FAT32 Library (71592 times)
  3. Network Ethernet Library (56989 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29777 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Peltier Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 176 times

Not followed.

License: MIT license  

The Peltier Click is a Click board™ which utilizes the SPV1050, an ultralow power energy harvester and battery charger from STMicroelectronics. The Peltier Click can charge lithium battery using thermoelectric energy harvesting device (TEG).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Peltier Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Peltier Click" changes.

Do you want to report abuse regarding "Peltier Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Peltier Click

The Peltier Click is a Click board™ which utilizes the SPV1050, an ultralow power energy harvester and battery charger from STMicroelectronics. The Peltier Click can charge lithium battery using thermoelectric energy harvesting device (TEG).

peltier_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : GPIO type

Software Support

We provide a library for the Peltier Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Peltier Click driver.

Standard key functions :

  • Config Object Initialization function.

    void peltier_cfg_setup ( peltier_cfg_t *cfg );

  • Initialization function.

    PELTIER_RETVAL peltier_init ( peltier_t ctx, peltier_cfg_t cfg );

Example key functions :

  • Enables LDO2 function.

    void peltier_enable_ldo2 ( peltier_t *ctx );

  • Disables LDO2 function.

    void peltier_disable_ldo2 ( peltier_t *ctx );

  • Check ongoing battery charge flag pin function.

    uint8_t peltier_battery_charge ( peltier_t *ctx );

Examples Description

This application is ultralow power energy harvester and battery charger.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver, disables both 1.8V and 3.3V outputs and starts write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    peltier_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    peltier_cfg_setup( &cfg );
    PELTIER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    peltier_init( &peltier, &cfg ); 
}

Application Task

This example demonstrates the use of Peltier Click board by first enableing 1.8V output, second by enableing 3.3V output, then enabling both outputs and finally disabling both outputs in 5 seconds intervals.


void application_task ( void )
{
    log_printf( &logger, "   1.8V output    \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_enable_ldo1( &peltier );
    peltier_disable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "   3.3V output    \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_disable_ldo1( &peltier );
    peltier_enable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "   Both outputs   \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_enable_ldo1( &peltier );
    peltier_enable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " Disable  outputs \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_disable_ldo1( &peltier );
    peltier_disable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Peltier

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AWS IoT Click

0

AWS IoT Click is a compact add-on board that allows users to easily connected to AWS IoT services and securely interact with cloud applications and other devices. This board features the ESP32-C3-MINI-1-N4-A, a small 2.4GHz WiFi (802.11 b/g/n) and Bluetooth® 5 module from Espressif Systems that use ESP32C3 series of SoC RISCV single-core microprocessor (ESP32-C3FN4) with 4MB flash in a single chip package. The module uses UART communication alongside several other features like standalone possibility via USB interface, firmware boot, JTAG for debugging, and others.

[Learn More]

Ambient 20 Click

0

Ambient 20 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the BU27030NUC, a 16-bit digital-output ambient light sensor with an I2C interface from Rohm Semiconductor. The BU27030NUC has a flexible and wide operating range of up to 20klx with a maximum resolution of 0.0007lux/count, providing an excellent responsivity close to the human eyes' response. It also features inherent 50Hz/60Hz light noise rejection and excellent IR-cut characteristics for high robustness at high sensitivity.

[Learn More]

Thermo K 3 Click

0

Thermo K 3 Click is a compact add-on board that provides accurate temperature measurements with a thermocouple probe. This board features the MAX6675, a cold-junction-compensated K-thermocouple-to-digital converter from Analog Devices. With the versatile type-K probe, this board enables precise temperature measurements of up to +700°C in 12-bit (0.25°C) resolution. This board can measure temperatures as high as +1024°C but with less precision. It features cold-junction compensation sensing and correction and open thermocouple detection.

[Learn More]