TOP Contributors

  1. MIKROE (2655 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136767 times)
  2. FAT32 Library (69976 times)
  3. Network Ethernet Library (55944 times)
  4. USB Device Library (46270 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41183 times)
  7. GSM click (28987 times)
  8. PID Library (26414 times)
  9. mikroSDK (26372 times)
  10. microSD click (25381 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Peltier click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 82 times

Not followed.

License: MIT license  

The Peltier Click is a Click board™ which utilizes the SPV1050, an ultralow power energy harvester and battery charger from STMicroelectronics. The Peltier click can charge lithium battery using thermoelectric energy harvesting device (TEG).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Peltier click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Peltier click" changes.

Do you want to report abuse regarding "Peltier click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Peltier click

The Peltier Click is a Click board™ which utilizes the SPV1050, an ultralow power energy harvester and battery charger from STMicroelectronics. The Peltier click can charge lithium battery using thermoelectric energy harvesting device (TEG).

peltier_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : GPIO type

Software Support

We provide a library for the Peltier Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Peltier Click driver.

Standard key functions :

  • Config Object Initialization function.

    void peltier_cfg_setup ( peltier_cfg_t *cfg );

  • Initialization function.

    PELTIER_RETVAL peltier_init ( peltier_t ctx, peltier_cfg_t cfg );

Example key functions :

  • Enables LDO2 function.

    void peltier_enable_ldo2 ( peltier_t *ctx );

  • Disables LDO2 function.

    void peltier_disable_ldo2 ( peltier_t *ctx );

  • Check ongoing battery charge flag pin function.

    uint8_t peltier_battery_charge ( peltier_t *ctx );

Examples Description

This application is ultralow power energy harvester and battery charger.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver, disables both 1.8V and 3.3V outputs and starts write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    peltier_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    peltier_cfg_setup( &cfg );
    PELTIER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    peltier_init( &peltier, &cfg ); 
}

Application Task

This example demonstrates the use of Peltier Click board by first enableing 1.8V output, second by enableing 3.3V output, then enabling both outputs and finally disabling both outputs in 5 seconds intervals.


void application_task ( void )
{
    log_printf( &logger, "   1.8V output    \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_enable_ldo1( &peltier );
    peltier_disable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "   3.3V output    \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_disable_ldo1( &peltier );
    peltier_enable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "   Both outputs   \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_enable_ldo1( &peltier );
    peltier_enable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " Disable  outputs \r\n" );
    log_printf( &logger, "------------------\r\n" );
    peltier_disable_ldo1( &peltier );
    peltier_disable_ldo2( &peltier );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Peltier

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DAC 7 click

0

DAC 7 click carries the AD5624R 12-bit buffered Digital-to-Analog Converter that converts digital value to the corresponding voltage level using external voltage reference.

[Learn More]

SolidSwitch 2 click

0

SolidSwitch 2 Click is a compact add-on board that contains a load switching device. This board features the L9026, an automotive eight-channel relay driver from STMicroelectronics. The L9026 incorporates two high-side drivers and six configurable high-side/low-side drivers driven by an SPI interface or by two dedicated parallel inputs. Operating from an external power supply from 3V up to 18V, it provides a maximum current of 1A on its output terminals. It also offers advanced diagnostic and protection features such as short-to-ground, open load, overcurrent, and overtemperature detections.

[Learn More]

Accel 4 click

0

Accel 4 Click is a compact add-on board that contains an acceleration sensor. This board features the FXLS8964AF, a 12-bit three-axis accelerometer from NXP Semiconductors. It allows selectable full-scale acceleration measurements in ranges of �2g, �4g, �8g, or �16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. The FXLS8964AF supports both high-performance and low-power operating modes, allowing maximum flexibility to meet the resolution and power needs for various unique use cases.

[Learn More]