TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141697 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59214 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Step Down 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 374 times

Not followed.

License: MIT license  

The Step Down 2 Click is a Click board™ equipped with the L6986HTR, a synchronous step-down switching regulator with operating input voltages from 4V to 38V and output voltage adjustability ranges from 0.85 V to VIN. Because of the main possibilities its features offer, the Step Down 2 Click is ideally used for programmable logic controllers (PLCs), decentralized intelligent nodes, sensors, and low noise applications (LNM).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Step Down 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Step Down 2 Click" changes.

Do you want to report abuse regarding "Step Down 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Step Down 2 Click

The Step Down 2 Click is a Click board™ equipped with the L6986HTR, a synchronous step-down switching regulator with operating input voltages from 4V to 38V and output voltage adjustability ranges from 0.85 V to VIN. Because of the main possibilities its features offer, the Step Down 2 Click is ideally used for programmable logic controllers (PLCs), decentralized intelligent nodes, sensors, and low noise applications (LNM).

stepdown2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : GPIO type

Software Support

We provide a library for the StepDown2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for StepDown2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void stepdown2_cfg_setup ( stepdown2_cfg_t *cfg );

  • Initialization function.

    STEPDOWN2_RETVAL stepdown2_init ( stepdown2_t ctx, stepdown2_cfg_t cfg );

  • Click Default Configuration function.

    void stepdown2_default_cfg ( stepdown2_t *ctx );

Example key functions :

  • This function reads the digital signal from the RST pin.

    uint8_t stepdown2_digital_read_rst ( stepdown2_t *ctx );

  • This function writes the specified digital signal to the CS pin.

    void stepdown2_digital_write_cs ( stepdown2_t *ctx, uint8_t signal );

Examples Description

This example showcases how to initialize and use the Step Down 2 Click. The Click is a step-down monolithic switching regulator able to deliver up to 2 A (DC).

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    stepdown2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    stepdown2_cfg_setup( &cfg );
    STEPDOWN2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    stepdown2_init( &stepdown2, &cfg );

    stepdown2_digital_write_cs( &stepdown2, 1 );
    Delay_100ms( );
}

Application Task

This function checks error input on the RST pin and reports if the device is working properly or not. It does so every second.


void application_task ( )
{
    if ( stepdown2_digital_read_rst( &stepdown2 ) )
    {
        log_printf( &logger, " * The device works as it should. *\r\n" );
    }
    else 
    {
        log_printf( &logger, " * The device does not work as it should. *\r\n" );
    }

    Delay_1sec( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.StepDown2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Led driver click

0

LED driver click carries the MCP1662 high-voltage step-up voltage driver from Microchip. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over PWM pin on the mikroBUSâ„¢ line.

[Learn More]

PAC1921 Click

0

PAC1921 Click is a versatile power monitoring and measuring device intended for the high speed, low latency measurements. This device can measure current, voltage or the power of the connected load.

[Learn More]

ETH click

0

Example shows how to use the ENC28J60:<br/> the board will reply to ARP & ICMP echo requests<br/> the board will reply to UDP requests on any port :<br/> returns the request in upper char with a header made of remote host IP & port number<br/>

[Learn More]