TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136817 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55953 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41203 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26376 times)
  10. microSD click (25383 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Step Down 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 82 times

Not followed.

License: MIT license  

The Step Down 2 click is a Click board™ equipped with the L6986HTR, a synchronous step-down switching regulator with operating input voltages from 4V to 38V and output voltage adjustability ranges from 0.85 V to VIN. Because of the main possibilities its features offer, the Step Down 2 click is ideally used for programmable logic controllers (PLCs), decentralized intelligent nodes, sensors, and low noise applications (LNM).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Step Down 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Step Down 2 click" changes.

Do you want to report abuse regarding "Step Down 2 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Step Down 2 click

The Step Down 2 click is a Click board™ equipped with the L6986HTR, a synchronous step-down switching regulator with operating input voltages from 4V to 38V and output voltage adjustability ranges from 0.85 V to VIN. Because of the main possibilities its features offer, the Step Down 2 click is ideally used for programmable logic controllers (PLCs), decentralized intelligent nodes, sensors, and low noise applications (LNM).

stepdown2_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : GPIO type

Software Support

We provide a library for the StepDown2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for StepDown2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void stepdown2_cfg_setup ( stepdown2_cfg_t *cfg );

  • Initialization function.

    STEPDOWN2_RETVAL stepdown2_init ( stepdown2_t ctx, stepdown2_cfg_t cfg );

  • Click Default Configuration function.

    void stepdown2_default_cfg ( stepdown2_t *ctx );

Example key functions :

  • This function reads the digital signal from the RST pin.

    uint8_t stepdown2_digital_read_rst ( stepdown2_t *ctx );

  • This function writes the specified digital signal to the CS pin.

    void stepdown2_digital_write_cs ( stepdown2_t *ctx, uint8_t signal );

Examples Description

This example showcases how to initialize and use the Step Down 2 click. The click is a step-down monolithic switching regulator able to deliver up to 2 A (DC).

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and click modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    stepdown2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    stepdown2_cfg_setup( &cfg );
    STEPDOWN2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    stepdown2_init( &stepdown2, &cfg );

    stepdown2_digital_write_cs( &stepdown2, 1 );
    Delay_100ms( );
}

Application Task

This function checks error input on the RST pin and reports if the device is working properly or not. It does so every second.


void application_task ( )
{
    if ( stepdown2_digital_read_rst( &stepdown2 ) )
    {
        log_printf( &logger, " * The device works as it should. *\r\n" );
    }
    else 
    {
        log_printf( &logger, " * The device does not work as it should. *\r\n" );
    }

    Delay_1sec( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.StepDown2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MAC Address click

0

MAC Address click provides a unique node address for your application. It also has 1Kbit of writable EEPROM memory.

[Learn More]

Brushless 24 click

0

Brushless 24 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV10866, a 3- phase sensorless motor driver from Texas Instruments with integrated power MOSFETs with current drive capability up to 800mA peak. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. Besides choosing the motor speed and a wide operating voltage range of up to 5V, it also has several built-in protection circuits, such as undervoltage, lock detection, voltage surge protection, and overtemperature.

[Learn More]

Thermo 20 click

0

Thermo 20 Click is a compact add-on board that provides an accurate temperature measurement. This board features the TSYS03, a miniature digital temperature sensor that comes up with factory calibrated, highly accurate temperature data from TE Connectivity.

[Learn More]