TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141679 times)
  2. FAT32 Library (74727 times)
  3. Network Ethernet Library (59203 times)
  4. USB Device Library (49213 times)
  5. Network WiFi Library (44988 times)
  6. FT800 Library (44517 times)
  7. GSM click (31195 times)
  8. mikroSDK (30081 times)
  9. microSD click (27577 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

StereoAmp Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Amplifier

Downloaded: 411 times

Not followed.

License: MIT license  

This is an example which demonstrates the use of StereoAmp Click board - stereo amplifier and is ideal for battery operated devices or as a lab amplifier.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "StereoAmp Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "StereoAmp Click" changes.

Do you want to report abuse regarding "StereoAmp Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


StereoAmp Click

This is an example which demonstrates the use of StereoAmp Click board - stereo amplifier and is ideal for battery operated devices or as a lab amplifier.

stereoamp_click.png

Click Product page


Click library

  • Author : Mihajlo Djordjevic
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the StereoAmp Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for StereoAmp Click driver.

Standard key functions :

  • Config Object Initialization function.

    void stereoamp_cfg_setup ( stereoamp_cfg_t *cfg );

  • Initialization function.

    STEREOAMP_RETVAL stereoamp_init ( stereoamp_t ctx, stereoamp_cfg_t cfg );

  • Click Default Configuration function.

    void stereoamp_default_cfg ( stereoamp_t *ctx );

Example key functions :

  • This function set the power On of both channels by write to the Mode Control register address of LM48100Q-Q1 chip on StereoAmp Click board.

    void stereoamp_set_power_on ( stereoamp_t *ctx );

  • This function set the volume of both channels to the Volume Control register address of LM48100Q-Q1 chip on StereoAmp Click board.

    void stereoamp_set_volume ( stereoamp_t *ctx, uint8_t volume );

Examples Description

This example shows how to initialize amplifiers and set volume control registers on the fly.

The demo application is composed of two sections :

Application Init

Application Init perfroms Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    stereoamp_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, "     Application  Init\r\n" );
    Delay_ms ( 500 );

    //  Click initialization.

    stereoamp_cfg_setup( &cfg );
    STEREOAMP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    stereoamp_init( &stereoamp, &cfg );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ---  StereoAmp Click --- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );

    stereoamp_default_cfg( &stereoamp );
    Delay_ms ( 1000 );

    log_printf( &logger, "         Power  On        \r\n" );
    stereoamp_set_power_on( &stereoamp );
    Delay_ms ( 1000 );
    log_printf( &logger, "--------------------------\r\n" );

    log_printf( &logger, "     Set Volume: -80dB    \r\n" );
    stereoamp_set_volume( &stereoamp, STEREOAMP_GAIN_NEG_80dB );
    Delay_ms ( 1000 );
    log_printf( &logger, "--------------------------\r\n" );

    log_printf( &logger, "       Enable Fault       \r\n" );
    stereoamp_enable_fault( &stereoamp );
    Delay_ms ( 1000 );
    log_printf( &logger, "--------------------------\r\n" );

    log_printf( &logger, "     Enable Diagnostic    \r\n" );
    stereoamp_enable_diagnostic( &stereoamp );
    Delay_ms ( 1000 );
    log_printf( &logger, "--------------------------\r\n" );

    log_printf( &logger, " -- Initialization done --\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 500 );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " -----  Play  Music ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 500 );
}

Application Task

This examples first set volume level 20 of 31 ( gain: 1,5 dB ) for 10 seconds. After that, we increase the volume to level 10 ( gain: -13,5 dB ) for the next 10 seconds. Results are being sent to the UART Terminal where you can track their changes.


void application_task ( void )
{
    log_printf( &logger, "        Gain 1.5 dB        \r\n" );
    stereoamp_set_volume( &stereoamp, STEREOAMP_GAIN_1_5dB );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "--------------------------\r\n" );

    log_printf( &logger, "        Gain -13.5 dB      \r\n" );
    stereoamp_set_volume( &stereoamp, STEREOAMP_GAIN_NEG_13_5dB );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "--------------------------\r\n" );
}  

The full application code, and ready to use projects can be installed directly from compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.StereoAmp

Additional notes and infromations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AudioAmp 6 click

5

Audio Amp 6 click is a mono/subwoofer audio amplifier, capable of delivering up to 18.5W per channel with the 4Ω load. It is based on the TPA3138D2, a class-D integrated amplifier, which utilizes a highly efficient switching scheme.

[Learn More]

Libraries for CEC_1302 peripherals

1

Package contains libraries and examples for all CEC1302 peripherals. Declarations of functions are compatible with functions that are provided from MCHP for other C compilers. Package contains sources of libraries so user can debug and adapt them.

[Learn More]

Temp-Log 5 Click

0

Temp-Log 5 Click is a temperature measuring Click board™ featuring the CAT34TS02, an accurate temperature sensor IC with integrated Serial Presence Detect EEPROM. Temperature Sensor measures and store temperatures at least 10 times in second. Temperature measurement results can be retrieved by the host MCU via I2C interface, and are compared to critical limits stored into internal registers. It also features programmable event output function and supports three modes.

[Learn More]