TOP Contributors

  1. MIKROE (2781 codes)
  2. Alcides Ramos (377 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139594 times)
  2. FAT32 Library (72044 times)
  3. Network Ethernet Library (57270 times)
  4. USB Device Library (47636 times)
  5. Network WiFi Library (43232 times)
  6. FT800 Library (42570 times)
  7. GSM click (29933 times)
  8. mikroSDK (28313 times)
  9. PID Library (26939 times)
  10. microSD click (26311 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

TouchKey 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Capacitive

Downloaded: 242 times

Not followed.

License: MIT license  

There are many kinds of touch sensors on the market, but every one of them has some unique features that make it stand out from the crowd. TouchKey 3 Click is equipped with seven advanced capacitive sensors, based on the proprietary QTouch® technology. Besides quite a large number of QTouch® capacitive sensor channels, TouchKey 3 Click also offers some additional features, such as the Adjacent Key Suppression (AKS®), a technology that ensures correct button press, even when the touch sensing pads are placed close to each other.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "TouchKey 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "TouchKey 3 Click" changes.

Do you want to report abuse regarding "TouchKey 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


TouchKey 3 Click

There are many kinds of touch sensors on the market, but every one of them has some unique features that make it stand out from the crowd. TouchKey 3 Click is equipped with seven advanced capacitive sensors, based on the proprietary QTouch® technology. Besides quite a large number of QTouch® capacitive sensor channels, TouchKey 3 Click also offers some additional features, such as the Adjacent Key Suppression (AKS®), a technology that ensures correct button press, even when the touch sensing pads are placed close to each other.

touchkey3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the TouchKey3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for TouchKey3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void touchkey3_cfg_setup ( touchkey3_cfg_t *cfg );

  • Initialization function.

    TOUCHKEY3_RETVAL touchkey3_init ( touchkey3_t ctx, touchkey3_cfg_t cfg );

  • Click Default Configuration function.

    void touchkey3_default_cfg ( touchkey3_t *ctx );

Example key functions :

  • Function executes one of the possible commands.

    uint8_t touchkey3_send_command ( touchkey3_t *ctx, uint8_t command );

  • Function sends a request command, and returns the response.

    uint8_t touchkey3_send_request ( touchkey3_t ctx, uint8_t request, uint8_t p_response );

  • Function reads from a selected configuration register.

    uint8_t touchkey3_get_data ( uint8_t data_address, uint8_t * read_data );

Examples Description

This Click uses 7 capacitive sensing channels, with the #CHANGE pin routed to the INT pin of the mikroBUS™, so that an interrupt can be triggered if any of the sensors detect a touch event. This can be used to trigger an SPI read cycle only when the key is actually pressed, avoiding the need for constant polling of the sensor registers.

The demo application is composed of two sections :

Application Init

Initializes Click driver and performs a soft reset of the Click.


void application_init ( void )
{
    log_cfg_t log_cfg;
    touchkey3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    touchkey3_cfg_setup( &cfg );
    TOUCHKEY3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    touchkey3_init( &touchkey3, &cfg );

    touchkey3_send_command( &touchkey3, TOUCHKEY3_CMD_RESET );
}

Application Task

Reads the status of the keys, and outputs a message if a key is touched.


void application_task ( void )
{ 
    touchkey3_send_request( &touchkey3, TOUCHKEY3_REQ_ALL_KEYS, &return_data );

    for ( counter = 0; counter < 7; counter++ )
    {
        if ( ( return_data[ 1 ] >> counter ) & 0x01 )
        {
            log_info( &logger, "Touch detected on key " );
            //Converts the key index into ascii character ( 0 - 7 -> '1' - '7')
            temp = counter + 49;
            log_info( &logger, "%d\r\n", temp );
            Delay_ms ( 1000 );
        }
    }
    Delay_ms ( 200 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.TouchKey3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

IR Sense click

6

IR Sense click carries the AK9750 quantum-type IR sensor. The click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over I2C interface, with additional functionality provided by the INT pin on the mikroBUSâ„¢ line.

[Learn More]

Flash 10 Click

0

Flash 10 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25FF321A, an SPI configurable 32Mbit (2Mx16) serial Flash memory solution from Dialog Semiconductor. The AT25FF321A is an ideal solution for systems in which program code is shadowed from Flash memory into embedded or external RAM (code shadow) for execution and where small amounts of data are stored and updated locally in the Flash memory. It has a flexible and optimized erase architecture for code and data storage applications, non-volatile protection, and four specialized 128-byte OTP security registers to store a unique device ID and locked key storage. This memory can withstand many write cycles (minimum 100k) and has a data retention period greater than 20 years.

[Learn More]

Ambient 22 Click

0

Ambient 22 Click is a compact add-on board that measures the intensity of visible light. This board features the OPT3005, a single-chip lux meter from Texas Instruments that transforms light intensity to a digital signal output that can be directly communicated via an I2C interface. The sensor's spectral response tightly matches the human eye's photopic response along with extreme rejection to 850nm and 940nm infrared light over a wide angle of incidence. Measurements can be made from 20mlux up to 166klux without manually selecting full-scale ranges using the built-in, full-scale setting feature.

[Learn More]