TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Counter Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Rotary encoder

Downloaded: 392 times

Not followed.

License: MIT license  

Counter Click carries an LS7366R 32-bit quadrature counter. The top of the board has a pinout for interfacing with incremental encoders. The interface has ENCA and ENCB pins, along with ENCI, which is a programmable index.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Counter Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Counter Click" changes.

Do you want to report abuse regarding "Counter Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Counter Click

Counter Click carries an LS7366R 32-bit quadrature counter. The top of the board has a pinout for interfacing with incremental encoders. The interface has ENCA and ENCB pins, along with ENCI, which is a programmable index.

counter_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Counter Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Counter Click driver.

Standard key functions :

  • Config Object Initialization function.

    void counter_cfg_setup ( counter_cfg_t *cfg );

  • Initialization function.

    COUNTER_RETVAL counter_init ( counter_t ctx, counter_cfg_t cfg );

  • Click Default Configuration function.

    void counter_default_cfg ( counter_t *ctx );

Example key functions :

  • This function reads CNTR, using Click object.

    int32_t counter_read_cntr ( counter_t *ctx );

  • This function reads STR, using Click object.

    uint8_t counter_read_str ( counter_t *ctx );

  • This function reads OTR, using Click object.

    int32_t counter_read_otr ( counter_t *ctx );

Examples Description

This application measures the speed and the position of the DC motor shafts.

The demo application is composed of two sections :

Application Init

Initializes driver init and chip init


void application_init ( void )
{
    log_cfg_t log_cfg;
    counter_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    counter_cfg_setup( &cfg );
    COUNTER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    counter_init( &counter, &cfg );

    counter_default_cfg( &counter );
    Delay_ms ( 300 );
}

Application Task

Reads data from the CNTR register and calculates the speed of the motor in Rad/s. All data is being displayed on the USB UART terminal where you can track their changes. The CNTR is a software configurable 8, 16, 24 or 32-bit up/down counter which counts the up/down pulses resulting from the quadrature clocks applied at the A and B inputs, or alternatively, in non-quadrature mode, pulses applied at the A input.


void application_task ( void )
{
    count = counter_read_cntr( &counter );
    log_printf( &logger, "Counter: %ld\r\n",  count );
    speed = ( float ) ( count - count_old ) / 3600.0;
    speed *= 6.283185;
    log_printf( &logger, "Speed: %.4f Rad/s\r\n",  speed );
    count_old = count;
    log_printf( &logger, "-------------------------\r\n" );
    Delay_ms ( 1000 );
}  

NOTE

An appropriate motor with optical encoder needs to be connected to the Click board.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Counter

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DC Motor 15 click

5

DC Motor 15 Click is a compact add-on board that contains a motor driver with current sense and regulation. This board features the DRV8874, an integrated motor driver with N-channel H-bridge, charge pump, current sensing, and adjustment from Texas Instruments.

[Learn More]

eFuse 5 Click

0

eFuse 5 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the TPS16530, an easy-to-use, positive 58V, 4.5A eFuse with a 31mΩ integrated FET from Texas Instruments. This industrial eFuse has programmable undervoltage, overcurrent, inrush current protection, and output current monitoring features. Besides, it allows flexibility to configure the device between the two current-limiting fault responses (latch off and auto-retry).

[Learn More]

Opto Encoder 2 Click

0

Opto Encoder 2 Click is a linear incremental optical sensor/encoder Click which can be used for the movement or rotation encoding.

[Learn More]