TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139058 times)
  2. FAT32 Library (71588 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29755 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

eFuse 2 click

Rating:

5

Author: MIKROE

Last Updated: 2021-01-29

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Power Switch

Downloaded: 1881 times

Not followed.

License: MIT license  

eFuse 2 Click is a compact add-on board that contains an integrated FET hot-swap device. This board features the TPS259631, a highly integrated circuit protection and power management solution from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "eFuse 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "eFuse 2 click" changes.

Do you want to report abuse regarding "eFuse 2 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

eFuse 2 Click

eFuse 2 Click

Native view of the eFuse 2 Click board.

View full image
eFuse 2 Click

eFuse 2 Click

Front and back view of the eFuse 2 Click board.

View full image

Library Description

The library covers all the necessary functions to control eFuse 2 Click board™. Library performs a standard I2C interface communication.

Key functions:

  • float *min_voltage, float *max_voltage ) - Set operating voltage function.
  • void efuse2_set_operating_current ( float current ) - Set operating current function.
  • void efuse2_operating_mode ( uint8_t mode ) - Set operating mode function.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2C, set RST pin as an output, set INT pin as input and start to write log.
  • Application Initialization - Initialization driver enables - I2C, AD5175: enable write, set the normal operating mode and operating current to the 1,2 A; AD5241: set operating voltage to the 12,0 V; display diagnostic states and temperature.
  • Application Task - (code snippet) This is an example that demonstrate the use of the eFuse 2 Click board™. eFuse 2 Click board™ uses USB UART log to display operating voltage, OVLO, UVLO and current limit condition. This firmware provides the functions to set the operating voltage and current limiting conditions in order to provide the threshold of the fault conditions. When one of the fault conditions is met, the microcontroller is notified via INT pin which is checked by the app to initiate a shutdown mode. All data logs write on USB UART changes every 2000 milliseconds.
void application_task ( )
{
    if ( efuse2_get_fault( ) == EFUSE2_FAULT )
    {
        efuse2_operating_mode( EFUSE2_AD5175_SHUTDOWN_MODE );
        Delay_ms( 1000 );

        mikrobus_logWrite( "        Shutdown Mode        ", _LOG_LINE );
        mikrobus_logWrite( "-----------------------------", _LOG_LINE );
        for ( ; ; );
    }

    FloatToStr( op_voltage, log_text );
    mikrobus_logWrite( " Oper. Voltage : ", _LOG_TEXT );
    mikrobus_logWrite( log_text, _LOG_TEXT );
    mikrobus_logWrite( " V", _LOG_LINE );

    FloatToStr( min_voltage, log_text );
    mikrobus_logWrite( " Undervoltage  : ", _LOG_TEXT );
    mikrobus_logWrite( log_text, _LOG_TEXT );
    mikrobus_logWrite( " V", _LOG_LINE );

    FloatToStr( max_voltage, log_text );
    mikrobus_logWrite( " Overvoltage   : ", _LOG_TEXT );
    mikrobus_logWrite( log_text, _LOG_TEXT );
    mikrobus_logWrite( " V", _LOG_LINE );

    FloatToStr( op_current, log_text );
    mikrobus_logWrite( " Current Limit : ", _LOG_TEXT );
    mikrobus_logWrite( log_text, _LOG_TEXT );
    mikrobus_logWrite( " A", _LOG_LINE );
    mikrobus_logWrite( "-----------------------------", _LOG_LINE );
    Delay_ms( 2000 );
}

Other mikroE Libraries used in the example:

  • I2C
  • UART
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

XBEE Click

0

XBee Click is a compact add-on board providing wireless connectivity to end-point devices in ZigBee mesh networks. This board features the XB24CZ7PIS-004, a low-power Digi XBee® RF module delivering superior performance and interference immunity from Digi International. With its ultra-sensitive receiver, the XB24CZ7PIS-004 operates in the 2.4GHz ISM band (indoor/urban range of 60m and outdoor of 1200m), allowing the formation of robust mesh network optimized for use in the US, Canada, Europe, Australia, and Japan (worldwide acceptance). Alongside firmware updates, it supports commissioning and LED behaviors to aid device deployment and commissioning.

[Learn More]

DAC 16 Click

0

DAC 16 Click is a compact add-on board, a digital-to-analog converter (DAC) designed for precise voltage and current output applications. This board features the DAC63204-Q1, an automotive-qualified 12-bit DAC from Texas Instruments. This Click board™ features four output channels with flexible configuration options, including adjustable voltage gains and selectable current ranges from ±25μA to ±250μA. It also supports both internal and external voltage references and offers a Hi-Z power-down mode for enhanced protection. Communication with the host MCU is enabled through either a 4-wire SPI or I2C interface, with configurable I2C addresses and a general-purpose I/O pin for additional functionality.

[Learn More]

Fram Click

0

FRAM Click is a Click board™ that carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

[Learn More]