TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57644 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43554 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Barometer 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 197 times

Not followed.

License: MIT license  

Barometer 2 Click is a digital barometer on a Click board™. Barometer 2 is equipped with the LPS35HW, an absolute piezoresistive pressure sensor with ceramic, water resistant package, manufactured using a proprietary technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Barometer 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Barometer 2 Click" changes.

Do you want to report abuse regarding "Barometer 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Barometer 2 Click

Barometer 2 Click is a digital barometer on a Click board™. Barometer 2 is equipped with the LPS35HW, an absolute piezoresistive pressure sensor with ceramic, water resistant package, manufactured using a proprietary technology.

barometer2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Barometer2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Barometer2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void barometer2_cfg_setup ( barometer2_cfg_t *cfg );

  • Initialization function.

    BAROMETER2_RETVAL barometer2_init ( barometer2_t ctx, barometer2_cfg_t cfg );

  • Click Default Configuration function.

    void barometer2_default_cfg ( barometer2_t *ctx );

Example key functions :

  • Gets the pressure value.

    float barometer2_get_pressure ( barometer2_t *ctx, uint8_t press_format );

  • Gets the temperature value.

    float barometer2_get_temperature ( barometer2_t *ctx, uint8_t temp_format );

  • Resets the device.

    void barometer2_software_reset ( barometer2_t *ctx );

Examples Description

The example starts off with the initialization and configuration of the Click and logger modules, tests the communication channel and reads and displays temperature and pressure values every second.

The demo application is composed of two sections :

Application Init

Initializes and configures the Click and logger modules and tests the communication for errors.


void application_init ( )
{
    log_cfg_t log_cfg;
    barometer2_cfg_t cfg;

    uint8_t test;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    barometer2_cfg_setup( &cfg );
    BAROMETER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    barometer2_init( &barometer2, &cfg );
    barometer2_default_cfg( &barometer2 );

    // Test communication

    test = barometer2_read_byte( &barometer2, BAROMETER2_REG_WHO_AM_I ); 

    if ( test == BAROMETER2_WHO_AM_I )
    {
        log_printf( &logger, "---- Communication OK!!! ----\r\n" );
    }
    else
    {
        log_printf( &logger, "---- Communication ERROR!!! ----\r\n" );
        for ( ; ; );
    } 

    // Software reset 

    barometer2_software_reset( &barometer2 );
    Delay_1sec();

    Delay_1sec( );
    log_printf( &logger, "---- Start Measurement ---- \r\n" );
}

Application Task

Reads and displays temperature and pressure values every second.


void application_task ( )
{
    float temperature;
    float pressure;

    temperature = barometer2_get_temperature( &barometer2, BAROMETER2_TEMPERATURE_IN_CELSIUS );
    log_printf( &logger, " Temperature : %f ", temperature );

    pressure = barometer2_get_pressure( &barometer2, BAROMETER2_PRESSURE_DATA_IN_mBar );
    log_printf( &logger, " Pressure : %f \n", pressure );

    log_printf( &logger, "--------------------------\n" );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Barometer2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

8x8 B Click

0

8x8 B Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 B Click uses a fast SPI communication protocol, allowing fast display response and no lag.

[Learn More]

Thermo click

0

Example for Thermo click board in mikroBUS form factor. It is a simple demonstration of how to read the temperature from a thermocouple. It uses MAX31855 chip for Thermocouple-to-Digital conversion. Displayed temperature is in degree Celsius.

[Learn More]

DeviceDrive click

5

DeviceDrive Click is a complete Cloud-on-Module solution with Wi-Fi functionality and integrated PCB antenna.

[Learn More]