TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136747 times)
  2. FAT32 Library (69953 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46267 times)
  5. Network WiFi Library (41887 times)
  6. FT800 Library (41174 times)
  7. GSM click (28986 times)
  8. PID Library (26414 times)
  9. mikroSDK (26363 times)
  10. microSD click (25377 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 121 times

Not followed.

License: MIT license  

DAC3 click carries Microchip’s MCP4726 IC, a 12-bit digital-to-analog converter, along with voltage output screw terminals. The digital value is converted to the appropriate voltage level in the range between GND and REFERENCE (VCC or 4.096V), which is proportional to the received 12-bit number.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 3 click" changes.

Do you want to report abuse regarding "DAC 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DAC 3 click

DAC3 click carries Microchip’s MCP4726 IC, a 12-bit digital-to-analog converter, along with voltage output screw terminals. The digital value is converted to the appropriate voltage level in the range between GND and REFERENCE (VCC or 4.096V), which is proportional to the received 12-bit number.

dac3_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : I2C type

Software Support

We provide a library for the DAC3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DAC3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dac3_cfg_setup ( dac3_cfg_t *cfg );

  • Initialization function.

    DAC3_RETVAL dac3_init ( dac3_t ctx, dac3_cfg_t cfg );

  • Click Default Configuration function.

    void dac3_default_cfg ( dac3_t *ctx );

Example key functions :

  • This function configures the click module.

    void dac3_write_all_mem ( dac3_t *ctx, uint16_t value );

  • This function sends a command to the click module using SPI communication.

    void dac3_send_command ( dac3_t *ctx, uint8_t cmd );

  • This function sets the output voltage on the click module terminal.

    void dac3_set_out_voltage ( dac3_t *ctx, uint16_t output );

Examples Description

This example showcases how to initialize, configure and use the DAC 3 click module. The click performs digital to analog conversion and the output voltage can be read on the output termi- nal using a multimeter. An oscilloscope is required to read the analog signal.

The demo application is composed of two sections :

Application Init

This function configures and initializes the click and logger modules. The write_all_mem(...) function configures DAC settings.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dac3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dac3_cfg_setup( &cfg );
    DAC3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dac3_init( &dac3, &cfg );

    dac3.dac_cfg.vrl = 0;
    dac3.dac_cfg.power = 0;
    dac3.dac_cfg.gain = 0;

    dac3_write_all_mem( &dac3, 0 );
    Delay_100ms( );
}

Application Task

This function resets and wakes up the click module and then changes the output voltage on the output terminal a few times in a loop with a 5 second delay. It does so every 1 second.


void application_task ( void )
{
    uint8_t cnt;
    uint32_t output_value;

    output_value = 500;

    dac3_send_command( &dac3, DAC3_RESET );
    Delay_100ms( );

    dac3_send_command( &dac3, DAC3_WAKE_UP );
    Delay_100ms( );

    for ( cnt = 1; cnt < 9; cnt ++ )
    {
        dac3_set_out_voltage( &dac3, output_value * cnt );

        log_printf( &logger, " .current DAC value: %d\r\n", output_value * cnt );
        log_printf( &logger, " .output voltage: %d mV\r\n", ( ( output_value * cnt ) * 79 ) / 64 );
        log_printf( &logger, "-------------------------------\r\n" );

        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, "###############################\r\n" );
    Delay_1sec( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DAC3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

FRAM 3 Click

5

The FRAM 3 Click is a Click boardâ„¢ that carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics that are comparable to much faster DRAM memory modules.

[Learn More]

H-Bridge 8 click

0

H-Bridge 8 Click is a compact add-on board that contains H-bridge current regulator. This board features the MP6519, a monolithic, step-down, current-source driver for applications that require accurate and fast current-response control from Monolithic Power Systems (MPS). It achieves excellent load and line regulation over a wide input supply range up to 28V. The four integrated MOSFET H-bridge control provide a fast dynamic load response and an ultra-high efficiency solution. Complete protection features include load open, load-short protection, over-current protection (OCP), over-temperature protection (OTP), and input over-voltage protection (OVP). This Click board™ is suitable as a current-regulator brushed DC motor/solenoid driver for various applications

[Learn More]

Hall Current 18 click

0

Hall Current 18 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the MCS1806, an isolated Hall-effect current sensor from MPS. The sensor is immune to external magnetic fields via differential sensing and has no magnetic hysteresis. The MCS1806 features galvanic isolation between the pins of the primary conductive path and the sensor leads, allowing it to replace optoisolators and other isolation devices.

[Learn More]