TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47955 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28669 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 17 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 228 times

Not followed.

License: MIT license  

The Thermo 17 Click is a Click board™ based on the TMP451-Q1, a high-accuracy, lowpower remote temperature sensor monitor with a built-in local temperature sensor from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 17 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 17 Click" changes.

Do you want to report abuse regarding "Thermo 17 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

\mainpage Main Page


Thermo 17 Click

The Thermo 17 Click is a Click board™ based on the TMP451-Q1, a high-accuracy, lowpower remote temperature sensor monitor with a built-in local temperature sensor from Texas Instruments.

thermo17_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Thermo17 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermo17 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermo17_cfg_setup ( thermo17_cfg_t *cfg );

  • Initialization function.

    THERMO17_RETVAL thermo17_init ( thermo17_t ctx, thermo17_cfg_t cfg );

Example key functions :

  • This function reads data from the desired register.

    uint8_t thermo17_generic_read ( thermo17_t *ctx, uint8_t reg_adr );

  • This function writes data to the desired register.

    void thermo17_generic_write ( thermo17_t *ctx, uint8_t reg_adr, uint8_t write_data );

  • This function reads data from the local or remote registers.

    float thermo17_read_temp ( thermo17_t *ctx, uint8_t temp_macro );

Examples Description

This demo-app shows local and remote temperature measurement procedure using Thermo 17 Click.

The demo application is composed of two sections :

Application Init

Initialization of the device and checks ID.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermo17_cfg_t cfg;
    uint8_t id_data;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    //  Click initialization.

    thermo17_cfg_setup( &cfg );
    THERMO17_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermo17_init( &thermo17, &cfg );

    id_data = thermo17_generic_read( &thermo17 ,THERMO17_REG_R_ID );

    if ( id_data == THERMO17_DEV_ID )
    {
        log_info( &logger, " - Correct device ID" );
    }
    else
    {
        log_info( &logger, " - Device ID ERROR" );
        for ( ; ; );
    }

    log_info( &logger, " Starting measurement " );
}

Application Task

Appliction measures temp value every 1000ms and logs it.


void application_task ( void )
{
    float read_data;

    read_data = thermo17_read_temp( &thermo17 ,THERMO17_TEMPERATURE_LOCAL );
    log_printf( &logger, " - LOCAL: : %.2f C\r\n", read_data );

    Delay_ms ( 100 );

    read_data = thermo17_read_temp( &thermo17 ,THERMO17_TEMPERATURE_REMOTE );
    log_printf( &logger, " - REMOTE: : %.2f C\r\n", read_data );

    Delay_ms ( 100 );
    log_printf( &logger, " ******************** \r\n" );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo17

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Color 4 Click

0

Color 4 Click is a compact add-on board providing an accurate color-sensing solution. This board features the VEML6040, a 16-bit RGBW color sensor offering spectral response through a compatible I2C interface from Vishay Semiconductors. The VEML6040 is based on the Filtron™ technology achieving the closest ambient light spectral sensitivity to real-human eye responses. Alongside the color sensor, this IC also incorporates a signal conditioning circuit consisting of photodiodes, amplifiers, and A/D circuits placed into a single chip using the CMOS process. It provides a selectable measurement range up to 16.496lx with the highest sensitivity of 0.007865lx/step.

[Learn More]

eFuse 5 Click

0

eFuse 5 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the TPS16530, an easy-to-use, positive 58V, 4.5A eFuse with a 31mΩ integrated FET from Texas Instruments. This industrial eFuse has programmable undervoltage, overcurrent, inrush current protection, and output current monitoring features. Besides, it allows flexibility to configure the device between the two current-limiting fault responses (latch off and auto-retry).

[Learn More]

Hall Switch click

5

Hall Switch click is a magnetic field activated dual-relay Click board. Hall Switch click has two high-quality relays, which are activated by the Hall-effect sensor.

[Learn More]