TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142046 times)
  2. FAT32 Library (75269 times)
  3. Network Ethernet Library (59483 times)
  4. USB Device Library (49502 times)
  5. Network WiFi Library (45278 times)
  6. FT800 Library (44899 times)
  7. GSM click (31422 times)
  8. mikroSDK (30424 times)
  9. microSD click (27783 times)
  10. PID Library (27619 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 410 times

Not followed.

License: MIT license  

The TSYS01 is a single chip, versatile, new technology temperature sensor. The TSYS01 provides factory calibrated temperature information. It includes a temperature sensing chip and a 24 bit Σ-ADC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 9 Click" changes.

Do you want to report abuse regarding "Thermo 9 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thermo 9 Click

The TSYS01 is a single chip, versatile, new technology temperature sensor. The TSYS01 provides factory calibrated temperature information. It includes a temperature sensing chip and a 24 bit Σ-ADC.

thermo9_click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : Jan 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Thermo9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermo9 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermo9_cfg_setup ( thermo9_cfg_t *cfg );

  • Initialization function.

    THERMO9_RETVAL thermo9_init ( thermo9_t ctx, thermo9_cfg_t cfg );

Example key functions :

  • Function is used to send the command to the device.

    void thermo9_send_cmd ( thermo9_t *ctx, uint8_t cmd_byte );

  • Function resets and calibrates the device in order for it to work properly.

    void thermo9_calibation ( thermo9_t *ctx );

  • Function is used to read temperature in degree centigrade.

    float thermo9_read_temp ( thermo9_t *ctx );

Examples Description

This demoapp measures temperature every 3 seconds.

The demo application is composed of two sections :

Application Init

Logger initialization, Click initialization and calibration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermo9_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    thermo9_cfg_setup( &cfg );
    THERMO9_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermo9_init( &thermo9, &cfg );
    Delay_ms ( 100 );
    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "    Thermo 9 Click   \r\n" );
    log_printf( &logger, "---------------------\r\n" );
    thermo9_calibation( &thermo9 );
    Delay_ms ( 100 );
    log_printf( &logger, "      Calibrated     \r\n" );
    log_printf( &logger, "---------------------\r\n" );
}

Application Task

This example shows capabilities of Thermo 9 Click by measuring temperature every 3 seconds and displaying temperature in degrres Celsius via USART terminal.


void application_task ( void )
{
    //  Task implementation.
    temp_val = thermo9_read_temp( &thermo9 );
    log_printf( &logger, "-- Temperature : %.2f °C\r\n", temp_val );

    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

Note

Calibration function must be used once in order to get calibrations!

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LED Driver 8 Click

0

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

[Learn More]

LDC1000 click

5

LDC1000 click carries the world's first inductance-to-digital converter IC. The board is ideal for highly precise short range measurements of the position, motion or composition of conductive targets.

[Learn More]

Thermo 13 click

5

Thermo 13 Click is a Click board equipped with the sensor IC, which can digitize temperature measurements between -30°C and +95°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]