TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141930 times)
  2. FAT32 Library (75077 times)
  3. Network Ethernet Library (59378 times)
  4. USB Device Library (49369 times)
  5. Network WiFi Library (45192 times)
  6. FT800 Library (44748 times)
  7. GSM click (31327 times)
  8. mikroSDK (30283 times)
  9. microSD click (27692 times)
  10. PID Library (27583 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Vibro Motor Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 348 times

Not followed.

License: MIT license  

Vibro Motor Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as C1026B002F. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect. This kind of motors is sometimes referred to as coin motors, due to its shape.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Vibro Motor Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Vibro Motor Click" changes.

Do you want to report abuse regarding "Vibro Motor Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Vibro Motor Click

Vibro Motor Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as C1026B002F. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect. This kind of motors is sometimes referred to as coin motors, due to its shape.

vibromotor_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : PWM type

Software Support

We provide a library for the VibroMotor Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for VibroMotor Click driver.

Standard key functions :

  • vibromotor_cfg_setup Config Object Initialization function.

    void vibromotor_cfg_setup ( vibromotor_cfg_t *cfg );
  • vibromotor_init Initialization function.

    err_t vibromotor_init ( vibromotor_t *ctx, vibromotor_cfg_t *cfg );

Example key functions :

  • vibromotor_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vibromotor_set_duty_cycle ( vibromotor_t *ctx, float duty_cycle );
  • vibromotor_pwm_stop This function stops the PWM moudle output.

    err_t vibromotor_pwm_stop ( vibromotor_t *ctx );
  • vibromotor_pwm_start This function starts the PWM moudle output.

    err_t vibromotor_pwm_start ( vibromotor_t *ctx );

Example Description

This application contorl the speed of vibro motor.

The demo application is composed of two sections :

Application Init

Configures PWM to 5kHz frequency, calculates maximum duty ratio and starts PWM with duty ratio value 0.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    vibromotor_cfg_t vibromotor_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    vibromotor_cfg_setup( &vibromotor_cfg );
    VIBROMOTOR_MAP_MIKROBUS( vibromotor_cfg, MIKROBUS_1 );
    err_t init_flag  = vibromotor_init( &vibromotor, &vibromotor_cfg );
    if ( PWM_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    vibromotor_set_duty_cycle ( &vibromotor, 0.0 );
    vibromotor_pwm_start( &vibromotor );

    log_info( &logger, " Application Task " );
}

Application Task

Allows user to enter desired command to control Vibro Motor Click board.


void application_task ( void ) {
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    vibromotor_set_duty_cycle ( &vibromotor, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) {
        duty_inc = -1;
    } else if ( 0 == duty_cnt ) {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.VibroMotor

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

8x8 Y Click

0

8x8 Y Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 Click uses a fast SPI communication protocol, allowing fast display response and no lag.

[Learn More]

NeoMesh 868MHz Click

0

NeoMesh Click - 868MHz is a compact add-on board with a low-power, long-range transceiver, ideal for Mesh wireless networking. This board features the NC1000C-8, a wireless Mesh network module from NeoCortec. With an additional antenna that MikroE offers connected to the module’s u.Fl connector, you can create a fully functional wireless Mesh network node that will work in the Sub-GHz frequency band of 868MHz. The module has a generic application layer that can configured to suit applications.

[Learn More]

Hydrogen Click

0

Hydrogen Click carries an MQ-8 sensor for hydrogen (H2). The gas sensing layer on the sensor unit is made of tin dioxide (SnO2), which has lower conductivity in clean air.

[Learn More]