TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142090 times)
  2. FAT32 Library (75347 times)
  3. Network Ethernet Library (59517 times)
  4. USB Device Library (49539 times)
  5. Network WiFi Library (45326 times)
  6. FT800 Library (44955 times)
  7. GSM click (31459 times)
  8. mikroSDK (30487 times)
  9. microSD click (27817 times)
  10. PID Library (27628 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ozone 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.21

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 532 times

Not followed.

License: MIT license  

Ozone 2 Click is an Ozone detection (O3) sensor, based on the MQ131 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ozone.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ozone 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ozone 2 Click" changes.

Do you want to report abuse regarding "Ozone 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Ozone 2 Click

Ozone 2 Click is an Ozone detection (O3) sensor, based on the MQ131 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ozone.

ozone2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Ozone2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ozone2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ozone2_cfg_setup ( ozone2_cfg_t *cfg );

  • Initialization function.

    OZONE2_RETVAL ozone2_init ( ozone2_t ctx, ozone2_cfg_t cfg );

  • Click Default Configuration function.

    void ozone2_default_cfg ( ozone2_t *ctx );

Example key functions :

  • Function reads from MCP 3351 ADC and returns 32 bit read value.

    uint32_t ozone2_read ( ozone2_t *ctx );

Examples Description

This example reads data from the MCP 3351 sensor.

The demo application is composed of two sections :

Application Init

Driver initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ozone2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ozone2_cfg_setup( &cfg );
    OZONE2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ozone2_init( &ozone2, &cfg );
}

Application Task

Reading ADC value and displaying it via UART.


void application_task ( void )
{
    read_value = ozone2_read( &ozone2 );
    log_printf( &logger, "Read Value: %u\r\n", read_value);

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ozone2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Cooler Click

0

Cooler Click is a compact add-on board designed as a cooling solution to manage heat in electronic systems efficiently. This board features the DRV8213, a brushless DC motor driver from Texas Instruments, ensuring a high-performance operation. This board also directly integrates a TMP007 temperature sensor and an MF25060V2-1000U-A99 cooling fan onto its platform, offering a compact and ready-to-use cooling system. It operates across a wide PWM frequency range from 0 to 100kHz, supports both 3.3V and 5V logic levels, and features several protection mechanisms, including undervoltage lockout, overcurrent protection, and overtemperature shutdown.

[Learn More]

Pressure 14 click

5

Pressure 14 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ABP2LANT060PG2A3XX, a piezoresistive silicon pressure sensor offering a digital output for reading pressure over the specified full-scale pressure span and a temperature range from Honeywell Sensing and Productivity Solutions.

[Learn More]

Altitude Click

0

Altitude Click features a MEMS pressure sensor MPL3115A2, which provides accurate pressure/altitude (20-bit) and temperature (12-bit) data.

[Learn More]