TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ozone 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.21

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 266 times

Not followed.

License: MIT license  

Ozone 2 Click is an Ozone detection (O3) sensor, based on the MQ131 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ozone.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ozone 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ozone 2 Click" changes.

Do you want to report abuse regarding "Ozone 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Ozone 2 Click

Ozone 2 Click is an Ozone detection (O3) sensor, based on the MQ131 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ozone.

ozone2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Ozone2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ozone2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ozone2_cfg_setup ( ozone2_cfg_t *cfg );

  • Initialization function.

    OZONE2_RETVAL ozone2_init ( ozone2_t ctx, ozone2_cfg_t cfg );

  • Click Default Configuration function.

    void ozone2_default_cfg ( ozone2_t *ctx );

Example key functions :

  • Function reads from MCP 3351 ADC and returns 32 bit read value.

    uint32_t ozone2_read ( ozone2_t *ctx );

Examples Description

This example reads data from the MCP 3351 sensor.

The demo application is composed of two sections :

Application Init

Driver initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ozone2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ozone2_cfg_setup( &cfg );
    OZONE2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ozone2_init( &ozone2, &cfg );
}

Application Task

Reading ADC value and displaying it via UART.


void application_task ( void )
{
    read_value = ozone2_read( &ozone2 );
    log_printf( &logger, "Read Value: %u\r\n", read_value);

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ozone2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BATT Boost 2 Click

0

BATT Boost 2 Click is a compact add-on board designed to extend the battery life of non-rechargeable, primary batteries in low-voltage, low-power applications. This board features the NBM7100A, a coin-cell battery-life booster with adaptive power optimization from Nexperia. The NBM7100A integrates two high-efficiency DC-DC conversion stages and an intelligent learning algorithm to optimize energy usage, allowing it to handle bursts of current up to 200mA without depleting the battery. It features two output terminals: VDH for high pulse load applications and VDP for powering 'Always-ON' components. Communication with the host MCU is achieved via the I2C interface, supporting up to 1MHz clock frequencies.

[Learn More]

Digital Input Output Demo

0

The application demonstrates GPIO SDK functionality.

[Learn More]

Magneto 10 Click

0

Magneto 10 Click is a compact add-on board that contains a 3D magnetometer. This board features the MLX90392, a +/-5mT range magnetometer for low-noise applications from Melexis Technologies. The MLX90392, specially designed for micropower applications, measures magnetic fields along the three axes (X, Y being in a plane parallel to the surface of the die, and Z being perpendicular to the surface).

[Learn More]