TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139255 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42404 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FT Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: RS485

Downloaded: 161 times

Not followed.

License: MIT license  

FT Click is a compact smart transceiver add-on board that helps you add a Free Topology (FT) interface to any host board with the mikroBUS™ socket. Leveraging FT, the most reliable and easiest-to-scale wired communications media, FT Click lets you network sensors and devices to create IoT solutions for automation and control networks that are easier to develop, integrate and install. This Click board™ supports full communication stacks for LON® and BACnet FT, as well as FTMQ (MQTT like messaging format) on board to simplify integration of BACnet, LON or custom IoT networks over twisted pair wire. FT Click is ideal for markets including smart buildings, cities, machines, agriculture, manufacturing, transportation and many more where wireless communications do not provide the required reliability and scale.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FT Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FT Click" changes.

Do you want to report abuse regarding "FT Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


FT Click

FT Click is a compact smart transceiver add-on board that helps you add a Free Topology (FT) interface to any host board with the mikroBUS™ socket. Leveraging FT, the most reliable and easiest-to-scale wired communications media, FT Click lets you network sensors and devices to create IoT solutions for automation and control networks that are easier to develop, integrate and install. This Click board™ supports full communication stacks for LON® and BACnet FT, as well as FTMQ (MQTT like messaging format) on board to simplify integration of BACnet, LON or custom IoT networks over twisted pair wire. FT Click is ideal for markets including smart buildings, cities, machines, agriculture, manufacturing, transportation and many more where wireless communications do not provide the required reliability and scale.

ft_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jun 2020.
  • Type : UART type

Software Support

We provide a library for the Ft Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ft Click driver.

Standard key functions :

  • ft_cfg_setup Config Object Initialization function.

    void ft_cfg_setup ( ft_cfg_t *cfg ); 
  • ft_init Initialization function.

    err_t ft_init ( ft_t *ctx, ft_cfg_t *cfg );

Example key functions :

  • ft_get_data_status Use this function to get current status of data

    uint8_t ft_get_data_status ( ft_t *ctx );
  • ft_get_data Use this function to read received data

    uint16_t ft_get_data ( ft_t *ctx, uint8_t *data_buf );
  • ft_send_package Use this function to send data to other module

    void ft_send_package ( ft_t *ctx, uint8_t *data_buf, uint16_t len, uint8_t queue );

Example Description

This example demonstrates the use of an FT Click board by showing the communication between the two Click boards.

The demo application is composed of two sections :

Application Init

Initalizes device and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ft_cfg_t ft_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ft_cfg_setup( &ft_cfg );
    FT_MAP_MIKROBUS( ft_cfg, MIKROBUS_1 );
    if ( UART_ERROR == ft_init( &ft, &ft_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, " Application Mode: Transmitter\r\n" );
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif
    log_info( &logger, " Application Task " );
}

Application Task

Depending on the selected application mode, it reads all the received data or sends the desired text message once per second.


void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
    ft_send_package( &ft, DEMO_TEXT_MESSAGE, strlen( DEMO_TEXT_MESSAGE ), 1 );
    log_printf( &logger, " Sent data: %s", ( char * ) DEMO_TEXT_MESSAGE );
    Delay_ms ( 1000 );
#else
    uint8_t rsp_data_buf[ FT_MAX_DATA_BUFFER ] = { 0 };
    uint8_t rx_byte = 0;
    if ( 1 == ft_generic_read( &ft, &rx_byte, 1 ) )
    {
        ft_isr_parser( &ft, rx_byte ); 
        if ( FT_NEW_DATA_AVAILABLE == ft_get_data_status( &ft ) )
        {
            if ( ft_get_data( &ft, rsp_data_buf ) )
            {
                log_printf( &logger, " Received data: %s", rsp_data_buf );
            }
        }
    }
#endif
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ft

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Smart Buck 2 Click

0

Smart Buck 2 Click is a compact add-on board that contains a high-frequency synchronous step-down DC-DC converter. This board features the TPS62363, a 3A processor supply with remote sense from Texas Instruments. The converter is optimized for battery-powered portable applications for a small solution size. It has an input range of 2.5V to 5.5V, which is common for battery technologies. The converter provides up to 3A peak load current operating at 2.5MHz typical switching frequency.

[Learn More]

Buck-Boost 3 click

6

The Buck-Boost 3 click is a voltage converter/regulator, which is able to provide a regulated voltage of 3.3V or 5V on the output, even when the input voltage drops under 3V.

[Learn More]

HVAC click

5

HVAC Click is a compact add-on board that contains Sensirion’s next-generation miniature CO2 sensor. This board features the SCD41, a carbon dioxide sensor build on the photoacoustic sensing principle, and Sensirion’s patented PASens® and CMOSens® technology to offer high accuracy at a minor form factor. On-chip signal compensation is realized with the build-in humidity and temperature sensor. It operates within a specified range from 400 to 5’000 ppm, configurable through the I2C interface with a single shot mode supported. This Click board™ is also suitable for indoor air quality applications using an additional SPS30 that allows smart ventilation systems to regulate ventilation in the most energy-efficient and human-friendly way, maintaining low CO2 concentration for a healthy, productive environment.

[Learn More]