TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142134 times)
  2. FAT32 Library (75444 times)
  3. Network Ethernet Library (59571 times)
  4. USB Device Library (49563 times)
  5. Network WiFi Library (45364 times)
  6. FT800 Library (45013 times)
  7. GSM click (31487 times)
  8. mikroSDK (30589 times)
  9. microSD click (27905 times)
  10. PID Library (27640 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RS485 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: RS485

Downloaded: 491 times

Not followed.

License: MIT license  

RS485 4 Click offers an UART to RS485 signal conversion, featuring the ADM2795E specialized IC with the complete galvanic isolation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RS485 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RS485 4 Click" changes.

Do you want to report abuse regarding "RS485 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RS485 4 Click

RS485 4 Click offers an UART to RS485 signal conversion, featuring the ADM2795E specialized IC with the complete galvanic isolation.

rs4854_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the Rs4854 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rs4854 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rs4854_cfg_setup ( rs4854_cfg_t *cfg );

  • Initialization function.

    RS4854_RETVAL rs4854_init ( rs4854_t ctx, rs4854_cfg_t cfg );

Example key functions :

  • Rx disable function.

    void rs4854_rx_disable ( rs4854_t *ctx );

  • Tx enable function.

    void rs4854_tx_enable ( rs4854_t *ctx );

  • Function for send command

    void rs4854_send_command ( rs4854_t ctx, char command );

Examples Description

This example reads and processes data from RS485 4 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rs4854_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rs4854_cfg_setup( &cfg );
    RS4854_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rs4854_init( &rs4854, &cfg );
}

Application Task

Reads the received data.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    rs4854_process( );
#endif    

#ifdef DEMO_APP_TRANSMITER
    rs4854_send_command( &rs4854, TEXT_TO_SEND );
    rs4854_process( );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif    
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rs4854

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Expand 9 Click

0

Expand 9 Click is a compact add-on board that contains a multi-port I/O expander. This board features the SX1509QB, the world’s lowest voltage level shifting GPIO expander from Semtech Corporation. The SX1509QB comes in a 16-channel configuration and allows easy serial expansion of I/O through a standard I2C serial interface. It also has a built-in level shifting feature making it highly flexible in power supply systems where communication between incompatible I/O voltages is required, an integrated LED driver for enhanced lighting, and a keypad scanning engine to implement keypad applications up to 8x8 matrix.

[Learn More]

DC Motor 5 click

0

DC MOTOR 5 click carries the DRV8701 brushed DC motor gate driver from Texas Instruments. The click is designed to run on an external power supply. It communicates with the target MCU over the following pins on the mikroBUSâ„¢ line: AN, RST, CS, PWM, and INT.

[Learn More]

Accel 29 Click

0

Accel 29 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL314, a three-axis ±200g accelerometer from Analog Devices. The ADXL314 offers 16-bit digital output data with a configurable host interface that supports SPI and I2C serial communication. An integrated memory management system with a 32-level FIFO buffer can store data to minimize host processor activity and lower overall system power consumption. Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at low power dissipation.

[Learn More]