TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139266 times)
  2. FAT32 Library (71754 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47432 times)
  5. Network WiFi Library (43092 times)
  6. FT800 Library (42408 times)
  7. GSM click (29835 times)
  8. mikroSDK (28101 times)
  9. PID Library (26886 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Altitude 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 209 times

Not followed.

License: MIT license  

Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. Altitude 4 Click employs a MEMS pressure sensor with a signal-conditioning IC to provide accurate pressure measurements from 260 to 1260 mBar.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Altitude 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Altitude 4 Click" changes.

Do you want to report abuse regarding "Altitude 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Altitude 4 Click

Altitude 4 Click introduces an absolute pressure sensor with digital output for low-cost applications labeled as NPA-201. Altitude 4 Click employs a MEMS pressure sensor with a signal-conditioning IC to provide accurate pressure measurements from 260 to 1260 mBar.

altitude4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : I2C type

Software Support

We provide a library for the Altitude4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Altitude4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void altitude4_cfg_setup ( altitude4_cfg_t *cfg );

  • Initialization function.

    ALTITUDE4_RETVAL altitude4_init ( altitude4_t ctx, altitude4_cfg_t cfg );

  • Click Default Configuration function.

    void altitude4_default_cfg ( altitude4_t *ctx );

Example key functions :

  • This function stores the len amount of data into the r_buf. The data is read from the address reg.

    void altitude4_generic_read ( altitude4_t ctx, uint8_t reg, uint8_t r_buf, uint8_t len );

  • This function writes the len amount of data from the w_buf to the address reg.

    void altitude4_generic_write ( altitude4_t ctx, uint8_t reg, uint8_t w_buf, uint8_t len );

  • This function acquires sensor data from the Click module and stores it in the sensor data object.

    uint8_t altitude4_read_sensor ( altitude4_t ctx, altitude4_sensor_t sens_data );

Examples Description

This example showcases how to initialize, configure and use the Altitude 4 Click module. The Click has a sensor that measures: altitude, pressure and temperature. No additional equipment or special configuration is required in order for this demo to work.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( void )
{
    log_cfg_t log_cfg;
    altitude4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    altitude4_cfg_setup( &cfg );
    ALTITUDE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    altitude4_init( &altitude4, &cfg );
    Delay_ms ( 500 );
}

Application Task

This function initializes the sensor data object through the read_sensor(...) function and then prints altitude, pressure and temperature values in the UART console. It does so every second.


void application_task ( void )
{
    altitude4_sensor_t sensor_data;

    altitude4_read_sensor( &altitude4, &sensor_data );

    log_printf( &logger, " * Altitude: %.2f m\r\n", sensor_data.altitude );
    log_printf( &logger, " * Pressure: %.2f mBar\r\n", sensor_data.pressure );
    log_printf( &logger, " * Temperature: %.2f C\r\n", sensor_data.temperature );
    log_printf( &logger, " -------------------------\r\n" );

    Delay_1sec( );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Altitude4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Let's make - Breathalyser

6

Is there such a thing as the Ballmer peak? It's the idea that moderate alcohol consumption has a benefitial impact on creativity, and hence, on programming ability. The theory was explained in this issue of the xkcd webcomic. We devised a practical test to examine the validity of the assumption.

[Learn More]

DC Motor 9 Click

0

DC Motor 9 Click is a brushed DC motor driver with the current limiting and current sensing. It is based on the DRV8871, an integrated H-Bridge driver IC, optimized for motor driving applications. It can be operated by two logic signals, allowing to drive the connected motor in two different ways: it can use fixed logic levels for the direction control, or it can be controlled by a PWM signal, offering an additional speed control option. The DRV8871 also contains a set of protection features, offering a very high level of reliability. Besides driving capabilities, DC Motor 9 Click can also sense current consumption at its output.

[Learn More]

MINI-M4 Stellaris Board Examples

0

Examples for MINI-M4 Stellaris Board. Provided examples demonstrate working with on-board LEDs and internal USB HID module.

[Learn More]