TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139847 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29981 times)
  8. mikroSDK (28442 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 204 times

Not followed.

License: MIT license  

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 Click accepts a wide voltage range on its input - from 5V to 30V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 5 Click" changes.

Do you want to report abuse regarding "Buck 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 5 Click

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 Click accepts a wide voltage range on its input - from 5V to 30V.

buck5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : sep 2020.
  • Type : SPI type

Software Support

We provide a library for the Buck5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck5_cfg_setup ( buck5_cfg_t *cfg );

  • Initialization function.

    BUCK5_RETVAL buck5_init ( buck5_t ctx, buck5_cfg_t cfg );

Example key functions :

  • This function wake up the chip.

    void buck5_power_on ( buck5_t *ctx );

  • This function reset the chip.

    void buck5_reset ( buck5_t *ctx );

  • Maximum output voltage is 5.5V (255 set value), and minimum output voltage is 1V (0 set value).

    void buck5_set_output_voltage ( buck5_t *ctx, uint8_t voltage );

Examples Description

Buck 5 Click is a high-efficiency buck DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 Click accepts a wide voltage range on its input - from 5V to 30V. The output voltage may be adjusted via the SPI interface, in the range from 0.9V to approximately 5.5V.

The demo application is composed of two sections :

Application Init

Initializes driver init, and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buck5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck5_cfg_setup( &cfg );
    BUCK5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck5_init( &buck5, &cfg );

    buck5_power_on( &buck5 );
    buck5_reset( &buck5 );
}

Application Task

Increases the output voltage by 500mV every 3 seconds from MIN to MAX VOUT.


void application_task ( void )
{
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MIN );
    log_printf( &logger, "VOUT: MIN\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1000mV );
    log_printf( &logger, "VOUT: ~1V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1500mV );
    log_printf( &logger, "VOUT: ~1.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2000mV );
    log_printf( &logger, "VOUT: ~2V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2500mV );
    log_printf( &logger, "VOUT: ~2.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3000mV );
    log_printf( &logger, "VOUT: ~3V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3500mV );
    log_printf( &logger, "VOUT: ~3.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4000mV );
    log_printf( &logger, "VOUT: ~4V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4500mV );
    log_printf( &logger, "VOUT: ~4.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_5000mV );
    log_printf( &logger, "VOUT: ~5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MAX );
    log_printf( &logger, "VOUT: MAX\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RNG Click

0

RNG Click is a random number generator (RNG) is a device that generates a sequence of numbers or symbols that cannot be reasonably predicted better than by a random chance. This Click board™ is true hardware random-number generator (HRNG), which generate genuinely random numbers.

[Learn More]

Headphone AMP 2 Click

0

Headphone AMP 2 Click is a compact add-on board that contains a stereo headphone amplifier. This board features the MAX9723, a stereo DirectDrive headphone amplifier with BassMax, volume control, and I2C from Analog Devices. The amplifier delivers 62mW into a 16Ω load, and features a high 90dB PSRR at 1KHz and a low 0.006% THD+N. It also features an integrated 32-level volume control, Click-and-pop suppression, ±8kV HBM ESD-protected headphone outputs, short-circuit and thermal-overload protection, and more.

[Learn More]

Accel 25 Click

0

Accel 25 Click is a compact add-on board that contains an acceleration sensor. This board features the MXC4005XC, a 12-bit three-axis thermal accelerometer from MEMSIC. It allows selectable full-scale acceleration measurements of ±2g, ±4g, or ±8g in three axes with a compatible I2C serial interface with 400KHz fast mode operation.

[Learn More]