TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141482 times)
  2. FAT32 Library (74339 times)
  3. Network Ethernet Library (58869 times)
  4. USB Device Library (48921 times)
  5. Network WiFi Library (44698 times)
  6. FT800 Library (44230 times)
  7. GSM click (30938 times)
  8. mikroSDK (29817 times)
  9. PID Library (27423 times)
  10. microSD click (27375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 312 times

Not followed.

License: MIT license  

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 Click accepts a wide voltage range on its input - from 5V to 30V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 5 Click" changes.

Do you want to report abuse regarding "Buck 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 5 Click

Buck 5 Click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 Click accepts a wide voltage range on its input - from 5V to 30V.

buck5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : sep 2020.
  • Type : SPI type

Software Support

We provide a library for the Buck5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck5_cfg_setup ( buck5_cfg_t *cfg );

  • Initialization function.

    BUCK5_RETVAL buck5_init ( buck5_t ctx, buck5_cfg_t cfg );

Example key functions :

  • This function wake up the chip.

    void buck5_power_on ( buck5_t *ctx );

  • This function reset the chip.

    void buck5_reset ( buck5_t *ctx );

  • Maximum output voltage is 5.5V (255 set value), and minimum output voltage is 1V (0 set value).

    void buck5_set_output_voltage ( buck5_t *ctx, uint8_t voltage );

Examples Description

Buck 5 Click is a high-efficiency buck DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current. Buck 5 Click accepts a wide voltage range on its input - from 5V to 30V. The output voltage may be adjusted via the SPI interface, in the range from 0.9V to approximately 5.5V.

The demo application is composed of two sections :

Application Init

Initializes driver init, and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buck5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck5_cfg_setup( &cfg );
    BUCK5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck5_init( &buck5, &cfg );

    buck5_power_on( &buck5 );
    buck5_reset( &buck5 );
}

Application Task

Increases the output voltage by 500mV every 3 seconds from MIN to MAX VOUT.


void application_task ( void )
{
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MIN );
    log_printf( &logger, "VOUT: MIN\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1000mV );
    log_printf( &logger, "VOUT: ~1V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_1500mV );
    log_printf( &logger, "VOUT: ~1.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2000mV );
    log_printf( &logger, "VOUT: ~2V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_2500mV );
    log_printf( &logger, "VOUT: ~2.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3000mV );
    log_printf( &logger, "VOUT: ~3V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_3500mV );
    log_printf( &logger, "VOUT: ~3.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4000mV );
    log_printf( &logger, "VOUT: ~4V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_4500mV );
    log_printf( &logger, "VOUT: ~4.5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_5000mV );
    log_printf( &logger, "VOUT: ~5V\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck5_set_output_voltage( &buck5, BUCK5_VOLTAGE_MAX );
    log_printf( &logger, "VOUT: MAX\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Current 7 Click

0

Current 7 Click is a compact add-on board providing a precise and accurate current sensing solution. This board features the INA282, a wide common-mode range, bidirectional, high-accuracy current shunt monitor from Texas Instruments. The INA282 represents a voltage output current shunt monitor that can sense drops across shunts at common-mode voltages from –14 V to +80 V, independent of the supply voltage, which operates in a range from 2.7V up to 18V supply. The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as 70μV. Also, the user is allowed to process the output signal in analog or digital form.

[Learn More]

I2C MUX Click

0

I2C MUX Click is an quad bidirectional translating I2C and SMBus switch with reset function, intended for applications with I2C slave address conflicts (multiple, identical temp sensors). It features a quad bidirectional translating switch controlled via the I2C bus, labeled as TCA9546A from Texas Instruments. Click has three address jumpers, allowing up to eight TCA9546A devices on the same bus. I2C MUX Click allows voltage translation between 1.8V, 2.5V, 3.3V, and 5V buses, and also supports hot insertion.

[Learn More]

REED Click

0

REED Click is a simple board that carries a standard (Single Pole Single Throw Normally Open) reed switch. A reed switch comprises of two thin magnetic contacts sealed inside a casing.

[Learn More]