We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.23
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 186 times
Not followed.
License: MIT license
6DOF IMU 2 Click is capable of precise acceleration and angular rate (gyroscopic) measurement.
Do you want to subscribe in order to receive notifications regarding "6DOF IMU 2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 2 Click" changes.
Do you want to report abuse regarding "6DOF IMU 2 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4105_6dof_imu_2_click.zip [555.87KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
6DOF IMU 2 Click is capable of precise acceleration and angular rate (gyroscopic) measurement.
We provide a library for the 6DofImu2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for 6DofImu2 Click driver.
Config Object Initialization function.
void c6dofimu2_cfg_setup ( c6dofimu2_cfg_t *cfg );
Initialization function.
C6DOFIMU2_RETVAL c6dofimu2_init ( c6dofimu2_t ctx, c6dofimu2_cfg_t cfg );
Click Default Configuration function.
void c6dofimu2_default_cfg ( c6dofimu2_t *ctx );
This function executes default configuration for 6DOF IMU 2 Click.
void c6dofimu2_default_cfg ( c6dofimu2_t ctx, c6dofimu2_cfg_t cfg );
This function read Accel X-axis, Y-axis and Z-axis.
void c6dofimu2_read_accel ( c6dofimu2_t ctx, c6dofimu2_accel_data_t accel_data );
This function read Gyro X-axis, Y-axis and Z-axis.
void c6dofimu2_read_gyro ( c6dofimu2_t ctx, c6dofimu2_gyro_data_t gyro_data );
Example Code presents acceleration and angular rate (gyroscopic) measurement.
The demo application is composed of two sections :
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
c6dofimu2_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " Application Init\r\n" );
Delay_ms ( 100 );
// Click initialization.
c6dofimu2_cfg_setup( &cfg );
C6DOFIMU2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
c6dofimu2_init( &c6dofimu2, &cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " --- 6DOF IMU 2 Click ---\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 100 );
c6dofimu2_default_cfg( &c6dofimu2, &cfg );
Delay_ms ( 100 );
log_printf( &logger, " ---- Initialization ---\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 100 );
}
This is an example which demonstrates the usage of 6DOF IMU 2 Click board. It measures accel and gyro coordinates (X,Y,Z) and then the results are being sent to the UART Terminal where you can track their changes for every 1 sec.
void application_task ( void )
{
c6dofimu2_read_accel( &c6dofimu2, &accel_data );
Delay_ms ( 100 );
c6dofimu2_read_gyro( &c6dofimu2, &gyro_data );
Delay_ms ( 100 );
log_printf( &logger, " Accel | Gyro \r\n" );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " X = %d | X = %d \r\n", accel_data.accel_x, gyro_data.gyro_x );
log_printf( &logger, " Y = %d | Y = %d \r\n", accel_data.accel_y, gyro_data.gyro_y );
log_printf( &logger, " Z = %d | Z = %d \r\n", accel_data.accel_z, gyro_data.gyro_z );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.