TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141318 times)
  2. FAT32 Library (74154 times)
  3. Network Ethernet Library (58737 times)
  4. USB Device Library (48834 times)
  5. Network WiFi Library (44544 times)
  6. FT800 Library (44120 times)
  7. GSM click (30857 times)
  8. mikroSDK (29699 times)
  9. PID Library (27359 times)
  10. microSD click (27273 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Fan 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 305 times

Not followed.

License: MIT license  

Fan 3 Click is the perfect choice for fan speed control and it can operate in seven discrete speed steps.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Fan 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Fan 3 Click" changes.

Do you want to report abuse regarding "Fan 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Fan 3 Click

Fan 3 Click is the perfect choice for fan speed control and it can operate in seven discrete speed steps.

fan3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Fan3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fan3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void fan3_cfg_setup ( fan3_cfg_t *cfg );

  • Initialization function.

    FAN3_RETVAL fan3_init ( fan3_t ctx, fan3_cfg_t cfg );

Example key functions :

  • Set speed

    void fan3_set_speed ( fan3_t *ctx, uint8_t new_speed );

Examples Description

This application controls the fan speed.

The demo application is composed of two sections :

Application Init

Initializes the Click device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    fan3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    fan3_cfg_setup( &cfg );
    FAN3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    fan3_init( &fan3, &cfg );

    log_printf( &logger, ">>> Initialized...\r\n" );
}

Application Task

Cycles through different fan speeds, including 0 - stopped.


void application_task ( )
{
    log_printf( &logger, "Speed 1...\r\n" );
    fan3_set_speed( ctx, FAN3_SPEED1 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "Speed 3...\r\n" );
    fan3_set_speed( ctx, FAN3_SPEED3 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "Speed 5...\r\n" );
    fan3_set_speed( ctx, FAN3_SPEED5 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "Speed 7...\r\n" );
    fan3_set_speed( ctx, FAN3_SPEED7 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "Stopped...\r\n" );
    fan3_set_speed( ctx, FAN3_STOPPED );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fan3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Temp-Hum 10 click

5

Temp-Hum 10 Click is a smart temperature and humidity sensing Click board, aimed towards IoT applications, due to its extremely small size and very low power consumption.

[Learn More]

Inclinometer 2 Click

0

Inclinometer 2 Click is a compact add-on board that measures the orientation angle of an object with respect to the force of gravity. This board features the IIS2ICLX, high accuracy, and resolution two-axis inclinometer from STMicroelectronics. It allows selectable full-scale measurements in ranges of ±0.5/±1/±2/±3g in two axes with a configurable host interface that supports both SPI and I2C serial communication. The sensing element is manufactured using a dedicated micromachining process developed by STMicroelectronics to produce inertial sensors and actuators on silicon wafers.

[Learn More]

3D Hall 6 click

5

3D Hall 6 Click is a very accurate, magnetic field sensing Click board, used to measure the intensity of the magnetic field across three perpendicular axes. It is equipped with the MLX90380, a monolithic contactless sensor IC sensitive to the flux density applied orthogonally and parallel to the IC surface, from Melexis.

[Learn More]