TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141482 times)
  2. FAT32 Library (74339 times)
  3. Network Ethernet Library (58869 times)
  4. USB Device Library (48921 times)
  5. Network WiFi Library (44698 times)
  6. FT800 Library (44229 times)
  7. GSM click (30938 times)
  8. mikroSDK (29817 times)
  9. PID Library (27423 times)
  10. microSD click (27375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.25

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 458 times

Not followed.

License: MIT license  

Determine your current position with GNSS 5 Click. It carries the NEO-M8N GNSS receiver module from u-blox.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS 5 Click" changes.

Do you want to report abuse regarding "GNSS 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GNSS 5 Click

Determine your current position with GNSS 5 Click. It carries the NEO-M8N GNSS receiver module from u-blox.

gnss5_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : UART type

Software Support

We provide a library for the GNSS 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSS 5 Click driver.

Standard key functions :

  • gnss5_cfg_setup Config Object Initialization function.

    void gnss5_cfg_setup ( gnss5_cfg_t *cfg );
  • gnss5_init Initialization function.

    err_t gnss5_init ( gnss5_t *ctx, gnss5_cfg_t *cfg );

Example key functions :

  • gnss5_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t gnss5_generic_read ( gnss5_t *ctx, char *data_out, uint16_t len );
  • gnss5_clear_ring_buffers This function clears UART tx and rx ring buffers.

    void gnss5_clear_ring_buffers ( gnss5_t *ctx );
  • gnss5_parse_gngga This function parses the GNGGA data from the read response buffer.

    err_t gnss5_parse_gngga ( char *rsp_buf, uint8_t gngga_element, char *element_data );

Example Description

This example demonstrates the use of GNSS 5 Click by reading and displaying the GPS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnss5_cfg_t gnss5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gnss5_cfg_setup( &gnss5_cfg );
    GNSS5_MAP_MIKROBUS( gnss5_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gnss5_init( &gnss5, &gnss5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data, parses the GNGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.

void application_task ( void )
{
    if ( GNSS5_OK == gnss5_process( &gnss5 ) )
    {
        if ( PROCESS_BUFFER_SIZE == app_buf_len )
        {
            gnss5_parser_application( &gnss5, app_buf );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSS5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

UT-S 7 SEG R click

0

UT-S 7 SEG R click uses two SMD ultra-thin DSM7UA 7-SEG LED displays, made with the patented technology that delivers thickness of only 2.1 mm. These displays are driven by the MAX6969, a constant current LED integrated driver from Maxim Integrated, which uses the SPI serial interface for communication.

[Learn More]

Ultrasonic 5 Click

0

Ultrasonic 5 Click is a compact add-on board that contains circuits for processing the ultrasonic sensor's output. This board features the TUSS4470, a transformer-drive ultrasonic sensor IC with a logarithmic amplifier from Texas Instruments. In addition to the high selectability of the power supply of the IC itself, this board also allows you to choose between 40kHz and 1MHz operating frequency, with a signal zero crossing comparator as an option. The ultrasonic sensor, the UTR-1440K from PUI Audio, also comes in the same package with this Click board™.

[Learn More]

Rotary O click

5

Rotary O click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU.

[Learn More]