TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136742 times)
  2. FAT32 Library (69952 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46267 times)
  5. Network WiFi Library (41887 times)
  6. FT800 Library (41173 times)
  7. GSM click (28983 times)
  8. PID Library (26413 times)
  9. mikroSDK (26361 times)
  10. microSD click (25376 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS 5 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.23

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 115 times

Not followed.

License: MIT license  

Determine your current position with GNSS 5 click. It carries the NEO-M8N GNSS receiver module from u-blox.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS 5 click" changes.

Do you want to report abuse regarding "GNSS 5 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GNSS 5 click

Determine your current position with GNSS 5 click. It carries the NEO-M8N GNSS receiver module from u-blox.

gnss5_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : UART type

Software Support

We provide a library for the GNSS 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSS 5 Click driver.

Standard key functions :

  • gnss5_cfg_setup Config Object Initialization function.

    void gnss5_cfg_setup ( gnss5_cfg_t *cfg );
  • gnss5_init Initialization function.

    err_t gnss5_init ( gnss5_t *ctx, gnss5_cfg_t *cfg );

Example key functions :

  • gnss5_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t gnss5_generic_read ( gnss5_t *ctx, char *data_out, uint16_t len );
  • gnss5_clear_ring_buffers This function clears UART tx and rx ring buffers.

    void gnss5_clear_ring_buffers ( gnss5_t *ctx );
  • gnss5_parse_gngga This function parses the GNGGA data from the read response buffer.

    err_t gnss5_parse_gngga ( char *rsp_buf, uint8_t gngga_element, char *element_data );

Example Description

This example demonstrates the use of GNSS 5 click by reading and displaying the GPS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnss5_cfg_t gnss5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gnss5_cfg_setup( &gnss5_cfg );
    GNSS5_MAP_MIKROBUS( gnss5_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gnss5_init( &gnss5, &gnss5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data, parses the GNGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.

void application_task ( void )
{
    if ( GNSS5_OK == gnss5_process( &gnss5 ) )
    {
        if ( PROCESS_BUFFER_SIZE == app_buf_len )
        {
            gnss5_parser_application( &gnss5, app_buf );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSS5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

4G LTE-APJ click

0

4G LTE-APJ click is an LTE Cat 1 / UMTS multimodecellular network solution, featuring the compact LARA-R2 series modem from u-blox. This module supports up to three LTE bands and one UMTS band. It also features a full range of options for the high speed cellular networking and communication, such as the network indication, full embedded TCP/UDP stack, HTTP and HTTPS transfer protocols, IPv4/IPv6 dual-stack support, secondary antenna for the RX diversity, antenna detection, jamming signal detection, embedded TLS 1.2 protocol for the improved security and more. 4G LARA click can achieve data rates up to 10.3 Mbps/5.2 Mbps (downlink/uplink).

[Learn More]

Accel 29 click

0

Accel 29 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL314, a three-axis ±200g accelerometer from Analog Devices. The ADXL314 offers 16-bit digital output data with a configurable host interface that supports SPI and I2C serial communication. An integrated memory management system with a 32-level FIFO buffer can store data to minimize host processor activity and lower overall system power consumption. Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at low power dissipation.

[Learn More]

APC1 Sensor Demo

0

APC1 Air Quality Sensor Bundle - Experience advanced air quality monitoring with our bundle solution, merging the ScioSense APC1 Air Quality sensor and the MIKROE Terminal Click board™. This dynamic combination creates a compact and precise system that measures PM levels, VOCs, temperature, humidity, and more. Explore this bundle to build an effective monitoring solution perfect for ensuring healthy indoor spaces or contributing to broader air quality research efforts.

[Learn More]