TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141552 times)
  2. FAT32 Library (74492 times)
  3. Network Ethernet Library (59029 times)
  4. USB Device Library (49023 times)
  5. Network WiFi Library (44794 times)
  6. FT800 Library (44371 times)
  7. GSM click (31048 times)
  8. mikroSDK (29914 times)
  9. microSD click (27476 times)
  10. PID Library (27473 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 309 times

Not followed.

License: MIT license  

GNSS2 Click carries Quectel’s L76 module and an SMA antenna connector.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS 2 Click" changes.

Do you want to report abuse regarding "GNSS 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GNSS 2 Click

GNSS2 Click carries Quectel’s L76 module and an SMA antenna connector.

gnss2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : UART type

Software Support

We provide a library for the GNSS 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSS 2 Click driver.

Standard key functions :

  • gnss2_cfg_setup Config Object Initialization function.

    void gnss2_cfg_setup ( gnss2_cfg_t *cfg );
  • gnss2_init Initialization function.

    err_t gnss2_init ( gnss2_t *ctx, gnss2_cfg_t *cfg );

Example key functions :

  • gnss2_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t gnss2_generic_read ( gnss2_t *ctx, char *data_out, uint16_t len );
  • gnss2_clear_ring_buffers This function clears UART tx and rx ring buffers.

    void gnss2_clear_ring_buffers ( gnss2_t *ctx );
  • gnss2_parse_gpgga This function parses the GPGGA data from the read response buffer.

    err_t gnss2_parse_gpgga ( char *rsp_buf, uint8_t gpgga_element, char *element_data );

Example Description

This example demonstrates the use of GNSS 2 Click by reading and displaying the GPS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnss2_cfg_t gnss2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gnss2_cfg_setup( &gnss2_cfg );
    GNSS2_MAP_MIKROBUS( gnss2_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gnss2_init( &gnss2, &gnss2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data, parses the GPGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.

void application_task ( void )
{
    if ( GNSS2_OK == gnss2_process( &gnss2 ) )
    {
        if ( PROCESS_BUFFER_SIZE == app_buf_len )
        {
            gnss2_parser_application( &gnss2, app_buf );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSS2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

IRNSS Click

0

IRNSS Click is a compact add-on board that provides fast positioning capability. This board features the L89H, a high-performance IRNSS-enabled GNSS module capable of acquiring and tracking GPS, IRNSS, GLONASS, BeiDou, Galileo, and QZSS signals from Quectel Wireless Solutions.

[Learn More]

Hall Current 7 Click

0

Hall Current 7 Click is a compact add-on board that provides economical and precise solutions for AC or DC current sensing. This board features the ACS770, a thermally enhanced, fully integrated, Hall effect-based high precision linear current sensor with 100µΩ current conductor from Allegro MicroSystems. Applied current flows directly into the integrated conductor generating a magnetic field, and an integrated low-hysteresis core concentrates the magnetic field sensed by the Hall element with a typical accuracy of ±1% and 120 kHz bandwidth.

[Learn More]

Magneto 2 click

1

Magneto 2 click is a mikroBUS add-on board with Melexis's MLX90316 monolithic rotary position sensor. Sensing flux density with the IC surface of the MLX90316 allows the click to decode the absolute rotary (angular) position from 0 to 360 degrees.

[Learn More]