We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 172 times
Not followed.
License: MIT license
MPU IMU Click carries the integrated 6-axis motion tracking device that combines 3-axis gyroscope and accelerometer.
Do you want to subscribe in order to receive notifications regarding "MPU IMU Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "MPU IMU Click" changes.
Do you want to report abuse regarding "MPU IMU Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4172_mpu_imu_click.zip [435.25KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
MPU IMU Click carries the integrated 6-axis motion tracking device that combines 3-axis gyroscope and accelerometer.
We provide a library for the MpuImu Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for MpuImu Click driver.
Config Object Initialization function.
void mpuimu_cfg_setup ( mpuimu_cfg_t *cfg );
Initialization function.
MPUIMU_RETVAL mpuimu_init ( mpuimu_t ctx, mpuimu_cfg_t cfg );
Click Default Configuration function.
void mpuimu_default_cfg ( mpuimu_t *ctx );
This function read Accel X-axis, Y-axis and Z-axis.
void mpuimu_read_accel ( mpuimu_t ctx, mpuimu_accel_data_t accel_data );
This function read Gyro X-axis, Y-axis and Z-axis.
void mpuimu_read_gyro ( mpuimu_t ctx, mpuimu_gyro_data_t gyro_data );
This function reads temperature data.
float mpuimu_read_temperature ( mpuimu_t *ctx );
Example code performs acceleration, angular rate (gyroscopic), and temperature measurement.
The demo application is composed of two sections :
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
mpuimu_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
Delay_ms ( 100 );
// Click initialization.
mpuimu_cfg_setup( &cfg );
MPUIMU_MAP_MIKROBUS( cfg, MIKROBUS_1 );
mpuimu_init( &mpuimu, &cfg );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " ---- MPU IMU Click ----\r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
mpuimu_default_cfg ( &mpuimu );
Delay_ms ( 1000 );
log_printf( &logger, " ---- Initialization ---\r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
Measured Accel and Gyro coordinates (X,Y,Z) and Temperature in degrees C which are being sent to the UART where you can track their changes. All data logs on USB UART for every 1 sec.
void application_task ( void )
{
mpuimu_read_accel( &mpuimu, &accel_data );
Delay_ms ( 100 );
mpuimu_read_gyro( &mpuimu, &gyro_data );
Delay_ms ( 100 );
temperature = mpuimu_read_temperature( &mpuimu );
Delay_ms ( 100 );
log_printf( &logger, " Accel | Gyro \r\n" );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " X = %d | X = %d \r\n", accel_data.accel_x, gyro_data.gyro_x );
log_printf( &logger, " Y = %d | Y = %d \r\n", accel_data.accel_y, gyro_data.gyro_y );
log_printf( &logger, " Z = %d | Z = %d \r\n", accel_data.accel_z, gyro_data.gyro_z );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " TEMP = %0.2f C\r\n", temperature );
log_printf( &logger, "--------------------------\r\n" );
software_reset ( &mpuimu );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.