We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.16
mikroSDK Library: 2.0.0.0
Category: Servo
Downloaded: 250 times
Not followed.
License: MIT license
Servo Click is a 16-channel PWM servo driver with the voltage sensing circuitry. It can be used to simultaneously control 16 servo motors, each with its own programmable PWM signal.
Do you want to subscribe in order to receive notifications regarding "Servo Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Servo Click" changes.
Do you want to report abuse regarding "Servo Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4197_servo_click.zip [638.24KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Servo Click is a 16-channel PWM servo driver with the voltage sensing circuitry. It can be used to simultaneously control 16 servo motors, each with its own programmable PWM signal.
We provide a library for the Servo Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Servo Click driver.
Config Object Initialization function.
void servo_cfg_setup ( servo_cfg_t *cfg );
Initialization function.
SERVO_RETVAL servo_init ( servo_t ctx, servo_cfg_t cfg );
Click Default Configuration function.
void servo_default_cfg ( servo_t *ctx );
This function settings Vref of Servo Clicks.
void servo_set_vref ( servo_t *ctx, uint16_t v_ref );
This function sets position.
void servo_set_position ( servo_t *ctx, uint8_t motor, uint8_t position );
This function reads the current value of Servo Click witch motor spends.
uint16_t setvo_get_current ( servo_t *ctx, uint8_t channel );
This app shows how the servo motor can be controled by the Click board.
The demo application is composed of two sections :
Initializes device.
void application_init ( void )
{
log_cfg_t log_cfg;
servo_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
servo_cfg_setup( &cfg );
SERVO_MAP_MIKROBUS( cfg, MIKROBUS_1 );
servo_init( &servo, &cfg );
servo_default_cfg( &servo );
}
The servo motor at CH1 rotate in clockwise and counter clockwise directions.
void application_task ( void )
{
log_printf( &logger, "<<< Counter clockwise >>>\r\n" );
Delay_1sec( );
for ( cnt = servo.min_pos; cnt <= servo.max_pos; cnt++ )
{
servo_set_position( &servo, SERVO_MOTOR_1, cnt );
log_printf( &logger, "Position : %u \r\n", ( uint16_t ) cnt );
Delay_10ms( );
}
log_printf( &logger, "-----------------------------\r\n" );
log_printf( &logger, "<<< Clockwise >>>\r\n" );
Delay_1sec( );
for ( cnt = servo.max_pos; cnt >= servo.min_pos; cnt-- )
{
servo_set_position( &servo, SERVO_MOTOR_1, cnt );
log_printf( &logger, "Position : %u \r\n", ( uint16_t ) cnt );
Delay_10ms( );
}
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.