TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141672 times)
  2. FAT32 Library (74721 times)
  3. Network Ethernet Library (59187 times)
  4. USB Device Library (49209 times)
  5. Network WiFi Library (44985 times)
  6. FT800 Library (44516 times)
  7. GSM click (31177 times)
  8. mikroSDK (30078 times)
  9. microSD click (27575 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heart Rate 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.23

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 611 times

Not followed.

License: MIT license  

The Heart Rate 9 Click is a Click board™ which features PIC16F1779 8-bit MCU and SFH 7060 heart rate and pulse oximetry monitoring sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heart Rate 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heart Rate 9 Click" changes.

Do you want to report abuse regarding "Heart Rate 9 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Heart Rate 9 Click

The Heart Rate 9 Click is a Click board™ which features PIC16F1779 8-bit MCU and SFH 7060 heart rate and pulse oximetry monitoring sensor.

heartrate9_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Dec 2020.
  • Type : UART type

Software Support

We provide a library for the HeartRate9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for HeartRate9 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void heartrate9_cfg_setup ( heartrate9_cfg_t *cfg );
  • Initialization function.

    HEARTRATE9_RETVAL heartrate9_init ( heartrate9_t *ctx, heartrate9_cfg_t *cfg );
  • Click Default Configuration function.

    void heartrate9_default_cfg ( heartrate9_t *ctx );

Example key functions :

  • Heart Rate 9 data writing function.

    err_t heartrate9_generic_write ( heartrate9_t *ctx, char *data_buf, uint16_t len );
  • Heart Rate 9 data reading function.

    err_t heartrate9_generic_read ( heartrate9_t *ctx, char *data_buf, uint16_t max_len );
  • Sets state of the rst pin setting.

    void heartrate9_set_rst ( heartrate9_t *ctx, uint8_t state );

Examples Description

This example reads and processes data from Heart Rate 9 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    heartrate9_cfg_t heartrate9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );

    // Click initialization.
    heartrate9_cfg_setup( &heartrate9_cfg );
    HEARTRATE9_MAP_MIKROBUS( heartrate9_cfg, MIKROBUS_1 );
    err_t init_flag  = heartrate9_init( &heartrate9, &heartrate9_cfg );
    if ( init_flag == UART_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    app_buf_len = 0;
    app_buf_cnt = 0;
}

Application Task

Reads the received data and logs it.

void application_task ( void )
{
   heartrate9_process();

    if ( app_buf_len > 0 )
    {
        log_printf( &logger, "%s", app_buf );
        heartrate9_clear_app_buf(  );
    }
}

Note

Data structure is:

AA;BB;CC;DD;EE;

AA -> Data header.\ BB -> Red diode.\ CC -> IR diode.\ DD -> Green diode.\ EE -> BPM.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeartRate9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

Scanner click

5

Scanner Click features a high-sensitivity 300-dpi, linear optical sensor array with integrated 8-bit analog-to-digital converters labeled as the TSL3301CL. This Click board™ has the array that consists of 102 pixels, each measuring 85 μm (H) by 77 μm (W) and spaced on 85 μm centers.

[Learn More]

Thermo 13 Click

0

Thermo 13 Click is a Click board™ equipped with the sensor IC, which can digitize temperature measurements between -30°C and +95°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]

H-Bridge Driver click

5

H-Bridge Driver Click is a compact add-on board that contains an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the MC33883, an H-Bridge gate driver with an integrated charge pump and independent high and low side gate drive channels from NXP Semiconductors.

[Learn More]