TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141691 times)
  2. FAT32 Library (74759 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44525 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 446 times

Not followed.

License: MIT license  

Brushless 9 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TC78B027FTG, a 1-Hall sine-wave PWM controller for three-phase brushless DC motors from Toshiba Semiconductor. It simplifies the motor selection by using only one Hall sensor input that can be used with either a single Hall sensor motor or the more conventional 3 Hall sensor motors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 9 Click" changes.

Do you want to report abuse regarding "Brushless 9 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 9 Click

Brushless 9 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TC78B027FTG, a 1-Hall sine-wave PWM controller for three-phase brushless DC motors from Toshiba Semiconductor. It simplifies the motor selection by using only one Hall sensor input that can be used with either a single Hall sensor motor or the more conventional 3 Hall sensor motors.

brushless-9-click-necto.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Dec 2020.
  • Type : PWM type

Software Support

We provide a library for the Brushlesss9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStockā„¢ or found on mikroE github account.

Library Description

This library contains API for Brushlesss9 Click driver.

Standard key functions :

  • brushless9_cfg_setup Config Object Initialization function.

    void brushless9_cfg_setup ( brushless9_cfg_t *cfg );
  • brushless9_init Initialization function.

    err_t brushless9_init ( brushless9_t *ctx, brushless9_cfg_t *cfg );

Example key functions :

  • brushless9_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t brushless9_set_duty_cycle ( brushless9_t *ctx, float duty_cycle );
  • brushless9_set_dir This function sets dir pin output to status setting.

    void brushless9_set_dir ( brushless9_t *ctx, uint8_t state );
  • brushless9_set_brk This function sets brk pin output to status setting.

    void brushless9_set_brk ( brushless9_t *ctx, uint8_t state );

Example Description

This application is a showcase of controlling speed and direction of brushless motor with hall sensor.

The demo application is composed of two sections :

Application Init

Initialization of LOG, PWM module and additional pins for controlling motor.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless9_cfg_t brushless9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless9_cfg_setup( &brushless9_cfg );
    BRUSHLESS9_MAP_MIKROBUS( brushless9_cfg, MIKROBUS_1 );
    err_t init_flag  = brushless9_init( &brushless9, &brushless9_cfg );
    if ( init_flag == PWM_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    brushless9_set_dir( &brushless9, direction );
    brushless9_set_brk( &brushless9, 1 );

    brushless9_set_duty_cycle ( &brushless9, 0 );
    brushless9_pwm_start( &brushless9 );
    log_info( &logger, " Application Task " );
}

Application Task

In span of 2 seconds changes duty cycle from 0 to 100% and then back to 0, at the end changes direction of motor.


void application_task ( void )
{
    log_info( &logger, " Starting... " );
    brushless9_set_brk( &brushless9, 0 );
    for ( uint8_t duty_cnt = 1; duty_cnt < 10; duty_cnt++ )
    {
        Delay_ms ( DUTY_CHANGE_DELAY );
        brushless9_set_duty_cycle ( &brushless9, ( float ) duty_cnt / 10.0 );
        log_printf( &logger, "Duty cycle: %u%%\r\n", ( uint16_t ) ( duty_cnt * 10 ) );
    }

    for ( uint8_t duty_cnt = 10; duty_cnt > 0; duty_cnt-- )
    {
        Delay_ms ( DUTY_CHANGE_DELAY );
        brushless9_set_duty_cycle ( &brushless9, ( float ) duty_cnt / 10.0 );
        log_printf( &logger, "Duty cycle: %u%%\r\n", ( uint16_t ) ( duty_cnt * 10 ) );
    }

    Delay_ms ( DUTY_CHANGE_DELAY );
    log_info( &logger, " Stopping... " );
    brushless9_set_duty_cycle ( &brushless9, 0 );
    brushless9_set_brk( &brushless9, 1 );
    Delay_ms ( BREAK_DELAY );
    log_info( &logger, " Changing direction... " );
    direction = !direction;
    brushless9_set_dir( &brushless9, direction );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BT Click

0

BT Click is a compact add-on board targeted for applications that require both Bluetooth Smart and Classic connectivity. This board features the BT121, a dual-mode Bluetooth Smart Ready module solution that gives unparalleled flexibility to integrate both Bluetooth Smart and Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) wireless technologies from Silicon Labs.

[Learn More]

BATT Boost 2 Click

0

BATT Boost 2 Click is a compact add-on board designed to extend the battery life of non-rechargeable, primary batteries in low-voltage, low-power applications. This board features the NBM7100A, a coin-cell battery-life booster with adaptive power optimization from Nexperia. The NBM7100A integrates two high-efficiency DC-DC conversion stages and an intelligent learning algorithm to optimize energy usage, allowing it to handle bursts of current up to 200mA without depleting the battery. It features two output terminals: VDH for high pulse load applications and VDP for powering 'Always-ON' components. Communication with the host MCU is achieved via the I2C interface, supporting up to 1MHz clock frequencies.

[Learn More]

MCP2542 click

1

MCP2542 click carries a Microchip CAN FD Transceiver compliant with CAN 2.0 and CAN with Flexible Data Rate (CAN FD).

[Learn More]