TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141290 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44073 times)
  7. GSM click (30805 times)
  8. mikroSDK (29657 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RS232 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: RS232

Downloaded: 420 times

Not followed.

License: MIT license  

RS232 Click provides an interface between the TTL/CMOS logic levels commonly used on microcontrollers and the RS-232 bus.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RS232 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RS232 Click" changes.

Do you want to report abuse regarding "RS232 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RS232 Click

RS232 Click provides an interface between the TTL/CMOS logic levels commonly used on microcontrollers and the RS-232 bus.

rs232_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the Rs232 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rs232 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rs232_cfg_setup ( rs232_cfg_t *cfg );

  • Initialization function.

    RS232_RETVAL rs232_init ( rs232_t ctx, rs232_cfg_t cfg );

Example key functions :

  • Generic write function.

    void rs232_generic_write ( rs232_t ctx, char data_buf, uint16_t len );

  • Generic read function.

    int32_t rs232_generic_read ( rs232_t ctx, char data_buf, uint16_t max_len );

Examples Description

This example reads and processes data from RS232 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rs232_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rs232_cfg_setup( &cfg );
    RS232_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rs232_init( &rs232, &cfg );

    Delay_ms ( 100 );
#ifdef RS232_RECEIVER
    log_printf( &logger, " ** RS232 Receiver **\r\n" );
#endif

#ifdef RS232_TRANSMITTER
    log_printf( &logger, " ** RS232 Transmitter **\r\n" );
#endif
}

Application Task

Depending on the selected mode (receiver/transmitter) this function reads/sends an appropriate message. All data is displayed on USB UART.


void application_task ( void )
{
#ifdef RS232_RECEIVER
    rsp_size = rs232_generic_read( &rs232, uart_rx_buffer, PROCESS_RX_BUFFER_SIZE );

    if ( rsp_size == strlen( message ) )
    {  
        log_printf( &logger, "Message received: %s", uart_rx_buffer );
        log_printf( &logger, "\r\n-------------------------\r\n" );
        memset( uart_rx_buffer, 0, rsp_size );
    }  
    Delay_ms ( 100 );
#endif

#ifdef RS232_TRANSMITTER
    rs232_generic_write( &rs232, message, strlen( message ) );
    log_printf( &logger, "Message sent: %s", message );
    log_printf( &logger, "\r\n-------------------------\r\n" );
    Delay_ms ( 1000 );
#endif   
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rs232

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pressure 9 click

10

Pressure 9 Click is a digital barometric air pressure sensor Click board. It is equipped with the DPS422, barometric air pressure sensor, based on a capacitive sensor element.

[Learn More]

Button Y Click

0

Button Y Click is a Click board™ equipped with the tactile switch, sometimes referred to as a pushbutton. A pushbutton is a component that is used very often in various designs, allowing the user to interact with the application. Although it sounds simple, a button needs to comply with a range of application requirements. It needs to have a very good mechanical endurance while retaining its specifications, a predictable bouncing time, a very low ON resistance, very high OFF resistance, and it needs to fulfill aesthetical requirements.

[Learn More]

Accel 16 Click

0

Accel 16 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL363, a micropower three-sensor combination including acceleration and temperature from Analog Devices. This device combines a 3-axis MEMS accelerometer, a temperature sensor, and an analog-to-digital converter (ADC) input for synchronized conversions of external signals.

[Learn More]