TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141808 times)
  2. FAT32 Library (74944 times)
  3. Network Ethernet Library (59303 times)
  4. USB Device Library (49302 times)
  5. Network WiFi Library (45099 times)
  6. FT800 Library (44661 times)
  7. GSM click (31277 times)
  8. mikroSDK (30207 times)
  9. microSD click (27656 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MIC33153 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 286 times

Not followed.

License: MIT license  

MIC33153 Click is a DC-DC adjustable step-down (buck) converter that is designed to deliver a substantial amount of current to very demanding loads, with the voltage output up to 3.5V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MIC33153 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MIC33153 Click" changes.

Do you want to report abuse regarding "MIC33153 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MIC33153 Click

MIC33153 Click is a DC-DC adjustable step-down (buck) converter that is designed to deliver a substantial amount of current to very demanding loads, with the voltage output up to 3.5V.

mic33153_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Mic33153 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mic33153 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mic33153_cfg_setup ( mic33153_cfg_t *cfg );

  • Initialization function.

    MIC33153_RETVAL mic33153_init ( mic33153_t ctx, mic33153_cfg_t cfg );

  • Click Default Configuration function.

    void mic33153_default_cfg ( mic33153_t *ctx );

Example key functions :

  • This function writes 12-bit value to DAC and that causes that output voltage be seted on determined value.

    void mic33153_write_dac ( mic33153_t *ctx, const uint16_t value_dac );

  • This function enables or disables output voltage depending on the state value.

    void mic33153_enable_out ( mic33153_t *ctx, uint8_t state );

  • This function hecks state of PG (INT) pin. If state is 1 that means that output voltage is above 92% of its steady

  • state voltage. If state is 0 that means that output voltage is below 86% of its steady state voltage.

    uint8_t mic33153_check_power_good ( mic33153_t *ctx );

Examples Description

This app enables step-down (buck) converter.

The demo application is composed of two sections :

Application Init

Initializes Click driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mic33153_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mic33153_cfg_setup( &cfg );
    MIC33153_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mic33153_init( &mic33153, &cfg );
    Delay_ms ( 100 );
}

Application Task

Activates the output voltage of the device, and then sets output voltage to various different values. All data is being logged on USB UART.


void application_task ( void )
{
    mic33153_enable_out( &mic33153, MIC33153_OUT_ENABLE );

    mic33153_write_dac ( &mic33153, MIC33153_VOLTAGE_1000MV );
    log_printf( &logger, "Output voltage set to 1000mV\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    mic33153_write_dac ( &mic33153, MIC33153_VOLTAGE_1500MV );
    log_printf( &logger, "Output voltage set to 1500mV\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    mic33153_write_dac ( &mic33153, MIC33153_VOLTAGE_2000MV );
    log_printf( &logger, "Output voltage set to 2000mV\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    mic33153_write_dac ( &mic33153, MIC33153_VOLTAGE_2500MV );
    log_printf( &logger, "Output voltage set to 2500mV\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    mic33153_write_dac ( &mic33153, MIC33153_VOLTAGE_3000MV );
    log_printf( &logger, "Output voltage set to 3000mV\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    mic33153_write_dac ( &mic33153, MIC33153_VOLTAGE_3200MV );
    log_printf( &logger, "Output voltage set to 3200mV\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------------\r\n" );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mic33153

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

IR Grid Click

0

IR Grid Click is a thermal imaging sensor. It has an array of 64 very sensitive factory calibrated IR elements (pixels), arranged in 4 rows of 16 pixels, each measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90621ESF-BAD IR sensor used on this Click board™ has only four pins, and it is mounted inside of the industry standard TO39 package. It is equipped with 2Kbit of EEPROM for storing the compensation and calibration parameters.

[Learn More]

WaterDetect click

10

Water Detect click is used for detecting water and other electroconductive liquids. All you need to do is splash or soak the upper part of the click board, and the output of Microchip's MCP606 compactor will go positive, signaling the presence of liquid.

[Learn More]

Serializer Click

0

Serializer Click is a compact add-on board that contains a digital input translator/serializer. This board features the MAX31910, an eight-channel digital input serializer for high-channel density digital input modules in industrial and process automation from Analog Devices. The MAX31910 translates, conditions, and serializes the 24V digital output of sensors and switches to 5V CMOS-compatible signals required by the MCU. It provides the front-end interface circuit of a programmable logic controller (PLC) digital input module. It communicates with MCU via the SPI interface and comes in configuration with an installed digital isolator. This Click board™ is suited for various applications such as industrial, process, and building automation, digital input modules for PLCs, and more.

[Learn More]