TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (351 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136668 times)
  2. FAT32 Library (69909 times)
  3. Network Ethernet Library (55923 times)
  4. USB Device Library (46251 times)
  5. Network WiFi Library (41882 times)
  6. FT800 Library (41129 times)
  7. GSM click (28973 times)
  8. PID Library (26406 times)
  9. mikroSDK (26345 times)
  10. microSD click (25350 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

nvSRAM 4 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: SRAM

Downloaded: 102 times

Not followed.

License: MIT license  

nvSRAM 4 Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY14B101PA, a 1-Mbit nvSRAM with a fully-featured real-time clock from Cypress Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "nvSRAM 4 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "nvSRAM 4 click" changes.

Do you want to report abuse regarding "nvSRAM 4 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


nvSRAM 4 click

nvSRAM 4 Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY14B101PA, a 1-Mbit nvSRAM with a fully-featured real-time clock from Cypress Semiconductor.

nvsram4_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Dec 2020.
  • Type : SPI type

Software Support

We provide a library for the nvSRAM4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for nvSRAM4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void nvsram4_cfg_setup ( nvsram4_cfg_t *cfg );
  • Initialization function.

    NVSRAM4_RETVAL nvsram4_init ( nvsram4_t *ctx, nvsram4_cfg_t *cfg );
  • Click Default Configuration function.

    void nvsram4_default_cfg ( nvsram4_t *ctx );

Example key functions :

  • nvSRAM 4 burst read memory function.

    err_t nvsram4_burst_read_memory ( nvsram4_t *ctx, uint32_t mem_addr, uint8_t *data_out, uint8_t n_bytes );
  • nvSRAM 4 burst write memory function.

    err_t nvsram4_burst_write_memory ( nvsram4_t *ctx, uint32_t mem_addr, uint8_t *data_in, uint8_t n_bytes );
  • nvSRAM 4 get RTC time function.

    void nvsram4_get_rtc_time ( nvsram4_t *ctx, nvsram4_rtc_time_t *rtc_time );

Examples Description

This is an example that demonstrates the use of the nvSRAM 4 click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - SPI, write demo_data string ( mikroE ), starting from the selected memory_addr ( 112233 ), set the time to 12:30:31 and set the date to 31-12-20.

void application_init ( void ) {
    log_cfg_t log_cfg;          /**< Logger config object. */
    nvsram4_cfg_t nvsram4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "\r\n" );
    log_info( &logger, " Application Init " );

    // Click initialization.

    nvsram4_cfg_setup( &nvsram4_cfg );
    NVSRAM4_MAP_MIKROBUS( nvsram4_cfg, MIKROBUS_1 );
    err_t init_flag  = nvsram4_init( &nvsram4, &nvsram4_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    nvsram4_default_cfg ( &nvsram4 );
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "     nvSRAM 4 click    \r\n" );
    log_printf( &logger, "-----------------------\r\n" );

    memory_addr = 112233;

    nvsram4_set_cmd( &nvsram4, NVSRAM4_STATUS_WREN );
    Delay_ms ( 100 );

    log_printf( &logger, "  Write data : %s", demo_data );
    nvsram4_burst_write_memory( &nvsram4, memory_addr, &demo_data[ 0 ], 9 );
    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms ( 1000 );

    date.day_of_week = 4;
    date.day = 31;
    date.month = 12;
    date.year = 20;
    nvsram4_set_rtc_date( &nvsram4, date );
    Delay_ms ( 100 );

    time.hours = 23;
    time.min = 59;
    time.sec = 50;
    nvsram4_set_rtc_time( &nvsram4, time );
    Delay_ms ( 100 );
}

Application Task

In this example, we read a data string, which we have previously written to memory,

starting from the selected memory_addr ( 112233 ) and read and display the current time and date, which we also previously set. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 1 sec.

void application_task ( void ) {
    nvsram4_get_rtc_time( &nvsram4, &time );
    Delay_ms ( 1 );
    nvsram4_get_rtc_date( &nvsram4, &date );
    Delay_ms ( 1 );

    if ( time.sec != new_sec ) {
        log_printf( &logger, "  Date      : %.2d-%.2d-%.2d\r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
        log_printf( &logger, "  Time      : %.2d:%.2d:%.2d\r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
        log_printf( &logger, "- - - - - - - - - - - -\r\n" );
        new_sec = time.sec;
        Delay_ms ( 10 );

        if ( date.year != c_year ) {
            log_printf( &logger, "     Happy New Year    \r\n" );
            c_year = date.year;
            Delay_ms ( 10 );
        } else {
            nvsram4_burst_read_memory( &nvsram4, memory_addr, &rx_data[ 0 ], 9 );
            log_printf( &logger, "  Read data : %s", rx_data );    
        }

        log_printf( &logger, "-----------------------\r\n" );
    } else {
        Delay_ms ( 1 );    
    }
}

Note

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.nvSRAM4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

HW Monitor click

0

HW Monitor Click is a compact add-on board used to monitor and regulate the performance of various hardware components within an embedded system. This board features the LM96080, an I2C-configurable system hardware monitor from Texas Instruments that contains a 10-bit delta-sigma ADC capable of measuring seven positive voltages and local temperature. The LM96080 also has two programmable fan speed monitoring inputs besides other hardware monitoring functions like chassis intrusion detection, additional external interrupt input, master reset for external purposes, as well as a sequencer that performs watchdog window comparisons of all measured values.

[Learn More]

TouchKey 2 click

1

TouchKey 2 click has four capacitive pads powered by ATtiny817 which has an integrated touch QTouch® controller. The click is designed to run on a 3.3V power supply. The four LEDs onboard the click indicate the Key (Pad) is pressed. TouchKey 2 click communicates with the target microcontroller over UART and SPI interface.

[Learn More]

CAP Slider 2 click

0

This application use for controlling various devices

[Learn More]