TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

6DOF IMU 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 243 times

Not followed.

License: MIT license  

6DOF IMU 5 Click features 7-Axis ICM-20789 chip from TDK, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "6DOF IMU 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 5 Click" changes.

Do you want to report abuse regarding "6DOF IMU 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


6DOF IMU 5 Click

6DOF IMU 5 Click features 7-Axis ICM-20789 chip from TDK, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

6dofimu5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the C6DofImu5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for C6DofImu5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c6dofimu5_cfg_setup ( c6dofimu5_cfg_t *cfg );

  • Initialization function.

    C6DOFIMU5_RETVAL c6dofimu5_init ( c6dofimu5_t ctx, c6dofimu5_cfg_t cfg );

  • Click Default Configuration function.

    void c6dofimu5_default_cfg ( c6dofimu5_t *ctx );

Example key functions :

  • This function turns the device on or off.

    void c6dofimu5_power ( c6dofimu5_t *ctx, uint8_t on_off );

  • This function is used to read gyroscope data.

    void c6dofimu5_read_gyroscope ( c6dofimu5_t ctx, int16_t gyro_x, int16_t gyro_y, int16_t gyro_z );

  • This function is used to read accelerometer data.

    void c6dofimu5_read_accelerometer ( c6dofimu5_t ctx, int16_t accel_x, int16_t accel_y, int16_t accel_z );

Examples Description

This example demonstrates the use of 6DOF IMU 5 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, checks the communication and sets the device default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c6dofimu5_cfg_t cfg;
    uint8_t id_val;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c6dofimu5_cfg_setup( &cfg );
    C6DOFIMU5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c6dofimu5_init( &c6dofimu5, &cfg );

    c6dofimu5_read_bytes ( &c6dofimu5, C6DOFIMU5_WHO_AM_I, &id_val, 1 );
    if ( id_val == C6DOFIMU5_WHO_AM_I_VAL )
    {
        log_printf( &logger, "-------------------------\r\n " );
        log_printf( &logger, "   6DOF  IMU  5  Click   \r\n " );
        log_printf( &logger, "-------------------------\r\n " );
        c6dofimu5_power ( &c6dofimu5, C6DOFIMU5_POWER_ON );
    }
    else
    {   
        log_printf( &logger, "-------------------------\r\n " );
        log_printf( &logger, "     FATAL  ERROR!!!     \r\n " );
        log_printf( &logger, "-------------------------\r\n " );
        for ( ; ; );
    }

    c6dofimu5_default_cfg( &c6dofimu5 );
    c6dofimu5_baro_settings( &c6dofimu5 );

    log_printf( &logger, "    ---Initialised---    \r\n " );
    log_printf( &logger, "-------------------------\r\n " );

    Delay_ms ( 100 );
}

Application Task

Measures acceleration, gyroscope, temperature and pressure data and displays the results on USB UART each second.


void application_task ( void )
{
    float x_gyro;
    float y_gyro;
    float z_gyro;
    float x_accel;
    float y_accel;
    float z_accel;
    uint32_t raw_pres;
    uint16_t raw_temp;
    c6dofimu5_process_data_t process_data;

    c6dofimu5_acceleration_rate( &c6dofimu5, &x_accel, &y_accel, &z_accel );
    c6dofimu5_angular_rate( &c6dofimu5, &x_gyro, &y_gyro, &z_gyro );

    log_printf( &logger, " Accel X: %.2f \t Gyro X: %.2f\r\n", x_accel, x_gyro );
    log_printf( &logger, " Accel Y: %.2f \t Gyro Y: %.2f\r\n", y_accel, y_gyro );
    log_printf( &logger, " Accel Z: %.2f \t Gyro Z: %.2f\r\n", z_accel, z_gyro );

    log_printf( &logger, "-------------------------\r\n " );

    c6dofimu5_read_raw_data( &c6dofimu5, &raw_pres, &raw_temp );

    process_data.p_raw = raw_pres;
    process_data.t_raw = raw_temp;

    c6dofimu5_process_data( &c6dofimu5, &process_data );

    log_printf( &logger, "Pressure: %.2f mBar\r\n " , process_data.pressure * 0.01 );
    log_printf( &logger, "Temperature: %.2f Celsius\r\n " , process_data.temperature );

    log_printf( &logger, "-------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DofImu5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Let's Make - mikromedia WiFi Weather Station

5

We're proudly presenting the first Let's Make project from our Intern's lab. This WiFi weather station consists of a mikromedia for STM32-M4, a mikromedia mikroBUS shield, a SHT1x click to measure the temperature, and a WiFi plus click for connectivity.

[Learn More]

GNSS RTK Click

0

GNSS RTK Click is a compact add-on board used to enhance the precision of position data derived from satellite-based positioning systems. This board features the ZED-F9P, a multi-band GNSS module with integrated multi-band Real Time Kinematics (RTK) technology offering centimeter-level accuracy from U-blox. This module concurrently uses GNSS signals from all four GNSS constellations (GPS, GLONASS, Galileo, and BeiDou), and provides multi-band RTK with fast convergence times, reliable performance, and easy integration. It also includes moving base support, allowing both base and rover to move while computing a centimeter-level accurate position between them.

[Learn More]

LCD Mono Click

0

LCD Mono Click is a Click board™ that uses the LS013B7DH03 LCD display from Sharp which combined with the EFM32, from Silicon Labs, and its energy saving capabilities creates a powerful display application.

[Learn More]