TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141703 times)
  2. FAT32 Library (74779 times)
  3. Network Ethernet Library (59221 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44537 times)
  7. GSM click (31203 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAQ 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 458 times

Not followed.

License: MIT license  

DAQ 3 Click is a compact add-on board representing a precision data acquisition solution. This board features the ADAQ4003, fast and precise μModule precision data acquisition (DAQ) signal chain solution from Analog Devices. Using SIP technology, the ADAQ4003 reduces end system component count by combining multiple standard signal processing and conditioning blocks into a single device. These blocks include a high-resolution 18-bit, 2 MSPS successive approximation register ADC, fully differential ADC driver amplifier, and a stable reference buffer along with selectable gain options. This Click board™ is suitable for process control and machine automation applications, as automatic test equipment, digital control loops, and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAQ 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAQ 3 Click" changes.

Do you want to report abuse regarding "DAQ 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DAQ 3 Click

DAQ 3 Click is a compact add-on board representing a precision data acquisition solution. This board features the ADAQ4003, fast and precise μModule precision data acquisition (DAQ) signal chain solution from Analog Devices. Using SIP technology, the ADAQ4003 reduces end system component count by combining multiple standard signal processing and conditioning blocks into a single device. These blocks include a high-resolution 18-bit, 2 MSPS successive approximation register ADC, fully differential ADC driver amplifier, and a stable reference buffer along with selectable gain options. This Click board™ is suitable for process control and machine automation applications, as automatic test equipment, digital control loops, and more.

daq3_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Dec 2020.
  • Type : SPI type

Software Support

We provide a library for the Daq3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for Daq3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void daq3_cfg_setup ( daq3_cfg_t *cfg );
  • Initialization function.

    DAQ3_RETVAL daq3_init ( daq3_t *ctx, daq3_cfg_t *cfg );
  • Click Default Configuration function.

    void daq3_default_cfg ( daq3_t *ctx );

Example key functions :

  • DAQ 3 get voltage function.

    float daq3_get_voltage ( daq3_t *ctx );
  • DAQ 3 get conversion result function.

    int32_t daq3_get_conversion_result ( daq3_t *ctx, daq3_reg_cfg_t cfg_data );
  • DAQ 3 data reading function.

    err_t daq3_generic_read ( daq3_t *ctx, uint8_t reg, uint8_t *data_out );

Examples Description

The demo application reads ADC value, calculate and display voltage ( mV ).

The demo application is composed of two sections :

Application Init

Initializes SPI driver and start to write log.

void application_init ( void ) {
    log_cfg_t log_cfg;    /**< Logger config object. */
    daq3_cfg_t daq3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "\r\n" );
    log_info( &logger, " Application Init " );

    // Click initialization.

    daq3_cfg_setup( &daq3_cfg );
    DAQ3_MAP_MIKROBUS( daq3_cfg, MIKROBUS_1 );
    err_t init_flag  = daq3_init( &daq3, &daq3_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    daq3_default_cfg ( &daq3 );
    log_info( &logger, " Application Task \r\n" );
    Delay_ms ( 100 );
    daq3_get_voltage( &daq3 );
    log_printf( &logger, "---------------------------\r\n" );
    log_printf( &logger, "         DAQ 3 Click       \r\n" );
    log_printf( &logger, "---------------------------\r\n" );
}

Application Task

This is an example that demonstrates the use of the DAQ 3 Click board. In this example, we read ADC value, calculate and display the voltage ( mV ) data. The maximum output voltage ( Vout ) is 4V and depends on the gain that is set at the Click. The formula used to calculate is Vin = Vout / gain. Keep in mind that Vout should not exceed 4V. For example, if the gain is set to 2 the maximum Vin is 2V ( 2V = 4V / 2 ). Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) {   
    float voltage = daq3_get_voltage( &daq3 );
    log_printf( &logger, "   Voltage : %.3f mV       \r\n", voltage );
    log_printf( &logger, "---------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Daq3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

Rotary R 2 Click

0

Rotary R 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual red LEDs that can visually represent the encoder position and more.

[Learn More]

Motion 4 Click

0

Motion 4 Click is a long distance PaPIR's motion sensor with plastic lense and controllable output. This Click board features EKMC1603111, a PIR motion sensor from Panasonic Corporation which can be used as human motion detector and is able to detect movement up to 12m with 170uA current consumption. Also featured on Motion 4 Click bord is TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected. It's allowing up to 40V between the SSR contacts in OFF state, and currents up to 2A while in ON state, thanks to a very low ON-state resistance. Motion 4 Click board™ is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.

[Learn More]

Manometer 2 Click

0

Manometer 2 Click carries the MS5525DSO-SB001GS digital pressure sensor, based on leading MEMS technology.

[Learn More]