TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (351 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136708 times)
  2. FAT32 Library (69921 times)
  3. Network Ethernet Library (55934 times)
  4. USB Device Library (46258 times)
  5. Network WiFi Library (41883 times)
  6. FT800 Library (41144 times)
  7. GSM click (28979 times)
  8. PID Library (26409 times)
  9. mikroSDK (26355 times)
  10. microSD click (25351 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAQ 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 129 times

Not followed.

License: MIT license  

DAQ 3 Click is a compact add-on board representing a precision data acquisition solution. This board features the ADAQ4003, fast and precise μModule precision data acquisition (DAQ) signal chain solution from Analog Devices. Using SIP technology, the ADAQ4003 reduces end system component count by combining multiple standard signal processing and conditioning blocks into a single device. These blocks include a high-resolution 18-bit, 2 MSPS successive approximation register ADC, fully differential ADC driver amplifier, and a stable reference buffer along with selectable gain options. This Click board™ is suitable for process control and machine automation applications, as automatic test equipment, digital control loops, and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAQ 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAQ 3 click" changes.

Do you want to report abuse regarding "DAQ 3 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DAQ 3 click

DAQ 3 Click is a compact add-on board representing a precision data acquisition solution. This board features the ADAQ4003, fast and precise μModule precision data acquisition (DAQ) signal chain solution from Analog Devices. Using SIP technology, the ADAQ4003 reduces end system component count by combining multiple standard signal processing and conditioning blocks into a single device. These blocks include a high-resolution 18-bit, 2 MSPS successive approximation register ADC, fully differential ADC driver amplifier, and a stable reference buffer along with selectable gain options. This Click board™ is suitable for process control and machine automation applications, as automatic test equipment, digital control loops, and more.

daq3_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Dec 2020.
  • Type : SPI type

Software Support

We provide a library for the Daq3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for Daq3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void daq3_cfg_setup ( daq3_cfg_t *cfg );
  • Initialization function.

    DAQ3_RETVAL daq3_init ( daq3_t *ctx, daq3_cfg_t *cfg );
  • Click Default Configuration function.

    void daq3_default_cfg ( daq3_t *ctx );

Example key functions :

  • DAQ 3 get voltage function.

    float daq3_get_voltage ( daq3_t *ctx );
  • DAQ 3 get conversion result function.

    int32_t daq3_get_conversion_result ( daq3_t *ctx, daq3_reg_cfg_t cfg_data );
  • DAQ 3 data reading function.

    err_t daq3_generic_read ( daq3_t *ctx, uint8_t reg, uint8_t *data_out );

Examples Description

The demo application reads ADC value, calculate and display voltage ( mV ).

The demo application is composed of two sections :

Application Init

Initializes SPI driver and start to write log.

void application_init ( void ) {
    log_cfg_t log_cfg;    /**< Logger config object. */
    daq3_cfg_t daq3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "\r\n" );
    log_info( &logger, " Application Init " );

    // Click initialization.

    daq3_cfg_setup( &daq3_cfg );
    DAQ3_MAP_MIKROBUS( daq3_cfg, MIKROBUS_1 );
    err_t init_flag  = daq3_init( &daq3, &daq3_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    daq3_default_cfg ( &daq3 );
    log_info( &logger, " Application Task \r\n" );
    Delay_ms ( 100 );
    daq3_get_voltage( &daq3 );
    log_printf( &logger, "---------------------------\r\n" );
    log_printf( &logger, "         DAQ 3 click       \r\n" );
    log_printf( &logger, "---------------------------\r\n" );
}

Application Task

This is an example that demonstrates the use of the DAQ 3 click board. In this example, we read ADC value, calculate and display the voltage ( mV ) data. The maximum output voltage ( Vout ) is 4V and depends on the gain that is set at the click. The formula used to calculate is Vin = Vout / gain. Keep in mind that Vout should not exceed 4V. For example, if the gain is set to 2 the maximum Vin is 2V ( 2V = 4V / 2 ). Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) {   
    float voltage = daq3_get_voltage( &daq3 );
    log_printf( &logger, "   Voltage : %.3f mV       \r\n", voltage );
    log_printf( &logger, "---------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Daq3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

OLED C click

0

OLED C click is equipped with the 96x96 high-color OLED display. It can display up to 65K/262K different colors and shades on a compact size display, based on the OLED technology.

[Learn More]

nvSRAM 2 click

5

nvSRAM 2 Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY14B101Q, a 1Mbit nvSRAM organized as 128K words of 8 bits each with a nonvolatile element in each memory cell from Cypress Semiconductor.

[Learn More]

3D Hall click

1

3D Hall click carries the MLX90333 Triaxisâ„¢ Hall sensor, capable of detecting the position of any magnet in nearby space. It does so by being sensitive to three components of flux density (BX, BY, BZ). The board communicates with the target MCU through the mikroBUS SPI interface. 3D Hall click is designed to use a 5V power supply only.

[Learn More]