TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141590 times)
  2. FAT32 Library (74540 times)
  3. Network Ethernet Library (59060 times)
  4. USB Device Library (49088 times)
  5. Network WiFi Library (44835 times)
  6. FT800 Library (44398 times)
  7. GSM click (31067 times)
  8. mikroSDK (29935 times)
  9. microSD click (27504 times)
  10. PID Library (27492 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

3 x Buck Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 252 times

Not followed.

License: MIT license  

3xBuck Click is a triple step-down (buck) converter Click board. It features three independent output terminals that can provide 1.8V, 3.3V, and 5V with the combined current output up to 3A.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "3 x Buck Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "3 x Buck Click" changes.

Do you want to report abuse regarding "3 x Buck Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


3 x Buck Click

3xBuck Click is a triple step-down (buck) converter Click board™. It features three independent output terminals that can provide 1.8V, 3.3V, and 5V with the combined current output up to 3A.

3xbuck_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the 3xBuck Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 3xBuck Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c3xbuck_cfg_setup ( c3xbuck_cfg_t *cfg );

  • Initialization function.

    C3XBUCK_RETVAL c3xbuck_init ( c3xbuck_t ctx, c3xbuck_cfg_t cfg );

  • Click Default Configuration function.

    void c3xbuck_default_cfg ( c3xbuck_t *ctx );

Example key functions :

  • This function enables desired Buck on the Click.

    void c3xbuck_enable_buck ( c3xbuck_t *ctx, uint8_t buck );

  • This function disables desired Buck on the Click.

    void c3xbuck_disable_buck ( c3xbuck_t *ctx, uint8_t buck );

  • This function sets voltage on desired Buck.

    void c3xbuck_set_voltage ( c3xbuck_t *ctx, uint8_t buck, uint8_t voltage );

Examples Description

This example demonstrates the use of the 3 x Buck Click Board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c3xbuck_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c3xbuck_cfg_setup( &cfg );
    C3XBUCK_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c3xbuck_init( &c3xbuck, &cfg );
    Delay_ms ( 100 );

    c3xbuck_default_cfg ( &c3xbuck );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

Alternates between predefined and default values for the Bucks output and logs the current set values on the USB UART.


void application_task ( void )
{
    //  Task implementation.
    log_printf( &logger, "Setting predefined values : \r\n" );
    log_printf( &logger, "Buck 1 : 1000 mV\r\n");
    log_printf( &logger, "Buck 2 : 1250 mV\r\n");
    log_printf( &logger, "Buck 3 : 1500 mV\r\n");

    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_1, C3XBUCK_OUTPUT_VOLTAGE_1000mV );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_2, C3XBUCK_OUTPUT_VOLTAGE_1250mV );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_3, C3XBUCK_OUTPUT_VOLTAGE_1500mV );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Setting default values: \r\n");
    log_printf( &logger, "Buck 1 : 1800 mV\r\n");
    log_printf( &logger, "Buck 2 : 3300 mV\r\n");
    log_printf( &logger, "Buck 3 : 5000 mV\r\n");

    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_1, C3XBUCK_BUCK_DEFAULT_OUTPUT_VOLTAGE );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_2, C3XBUCK_BUCK_DEFAULT_OUTPUT_VOLTAGE );
    c3xbuck_set_voltage( &c3xbuck, C3XBUCK_SELECT_BUCK_3, C3XBUCK_BUCK_DEFAULT_OUTPUT_VOLTAGE );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

The default output voltage on Buck 1 is 1800mV, Buck 2 is 3300mV, and Buck 3 is 5000mV. Configurable output voltage on all Bucks ranges from 680mV to 1950mV.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.3xBuck

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RTC 19 Click

0

RTC 19 Click is a compact add-on board that measures the passage of real-time. This board features the MAX31334, an I2C-configurable real-time clock with an integrated power switch from Analog Devices. The MAX31334 provides information like seconds, minutes, hours, days, months, years, and dates based on a 32.768kHz quartz crystal through an I2C serial interface to transmit time and calendar data to the MCU. It also has an alarm function that outputs an interrupt signal to the MCU when the day of the week, hour, or minute matches with the pre-set time, as well as a programmable square-wave output, event detection input with timestamping, and backup supply.

[Learn More]

Vibra Sense 2 Click

0

Vibra Sense 2 Click is a compact add-on board that contains a piezo sensor suitable for vibration measurements. This board features the LDT0-028K, a flexible 28 μm thick piezoelectric PVDF polymer film with screen-printed silver ink electrodes, laminated to a 0.125 mm polyester substrate, and fitted with two crimped contacts from TE Connectivity.

[Learn More]

SPI Isolator 2 Click

0

SPI Isolator 2 Click is a compact add-on board that contains a digital isolator optimized for a serial peripheral interface. This board features the ISO7741, a high-performance quad-channel digital isolator with a double capacitive silicon dioxide insulation barrier capable of galvanic isolation up to 5000Vrms from Texas Instruments. The ISO7741 provides high electromagnetic immunity and low emissions at low power consumption while isolating digital I/Os. It has three forward and one reverse-direction channel with enable pins that can be used to put the respective outputs in Hi-Z state. This Click board™ provides a simple, compact solution for isolated SPI data communication.

[Learn More]