TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140166 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47953 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28668 times)
  9. PID Library (27055 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

9DOF 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 181 times

Not followed.

License: MIT license  

9DOF 2 Click is a compact add-on board for applications which require lowest power motion tracking and magnetometer functionality.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "9DOF 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "9DOF 2 Click" changes.

Do you want to report abuse regarding "9DOF 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


9DOF 2 Click

9DOF 2 Click is a compact add-on board for applications which require lowest power motion tracking and magnetometer functionality.

9dof2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : SPI type

Software Support

We provide a library for the 9dof2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 9dof2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c9dof2_cfg_setup ( c9dof2_cfg_t *cfg );

  • Initialization function.

    C9DOF2_RETVAL c9dof2_init ( c9dof2_t ctx, c9dof2_cfg_t cfg );

  • Click Default Configuration function.

    void c9dof2_default_cfg ( c9dof2_t *ctx );

Example key functions :

  • Turns the device on or off.

    void c9dof2_power ( c9dof2_t *ctx, uint8_t on_off );

  • Function is used to read gyroscope data.

    void c9dof2_read_gyroscope ( c9dof2_t ctx, int16_t gyro_x, int16_t gyro_y, int16_t gyro_z );

  • Function is used to read accelerometer data.

    void c9dof2_read_accelerometer ( c9dof2_t ctx, int16_t accel_x, int16_t accel_y, int16_t accel_z );

Examples Description

This example demonstrates the use of 9DOF 2 Click board.

The demo application is composed of two sections :

Application Init

Initalizes SPI and device drivers, performs safety check, applies default configuration and writes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    c9dof2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c9dof2_cfg_setup( &cfg );
    C9DOF2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c9dof2_init( &c9dof2, &cfg );

    c9dof2_dev_rst( &c9dof2 );
    Delay_ms ( 1000 );

    id_val = c9dof2_read_byte ( &c9dof2, C9DOF2_WHO_AM_I_ICM20948 );

    if ( id_val == C9DOF2_WHO_AM_I_ICM20948_VAL )
    {
        log_printf( &logger, "--------------------\r\n" );
        log_printf( &logger, "   9DOF  2  Click   \r\n" );
        log_printf( &logger, "--------------------\r\n" );
        c9dof2_power ( &c9dof2, C9DOF2_POWER_ON );
    }
    else
    {
        log_printf(  &logger, "--------------------\r\n" );
        log_printf(  &logger, "   FATAL ERROR!!!   \r\n" );
        log_printf(  &logger, "--------------------\r\n" );
        for ( ; ; );
    }

    c9dof2_def_settings( &c9dof2 );

    log_printf(  &logger, "--- Initialised ---\r\n" );
    log_printf(  &logger, "--------------------\r\n" );

    Delay_ms ( 1000 );
}

Application Task

Reads the angular and acceleration rates and displays the values of X, Y, and Z axis on the USB UART each second.


void application_task ( void )
{
    //  Task implementation.

    c9dof2_angular_rate( &c9dof2, &x_gyro, &y_gyro, &z_gyro );

    log_printf( &logger, "Angular rate: \r\n" );

    log_printf( &logger, "X-axis: %.2f \r\n", x_gyro );

    log_printf( &logger, "Y-axis: %.2f \r\n", y_gyro );

    log_printf( &logger, "Z-axis: %.2f \r\n", z_gyro );

    log_printf( &logger, "---------------------\r\n" );

    c9dof2_acceleration_rate( &c9dof2, &x_accel, &y_accel, &z_accel );

    log_printf( &logger, "Acceleration rate: \r\n" );

    log_printf( &logger, "X-axis: %.2f \r\n", x_accel );

    log_printf( &logger, "Y-axis: %.2f \r\n", y_accel );

    log_printf( &logger, "Z-axis: %.2f \r\n", z_accel );

    log_printf( &logger, "---------------------\r\n" );

    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.9dof2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Opto Encoder 5 Click

0

Opto Encoder 5 Click is a compact add-on board that offers non-contact switching with unparalleled accuracy and precision. This board features the OPB666N, a Photologic® slotted optical switch from TT Electronics, ensuring top-notch performance and reliability. It integrates an 890nm infrared LED and a monolithic integrated circuit with a photodiode, linear amplifier, and Schmitt trigger, all powered effectively by a 5V supply from the mikroBUS™ power rail. The board features an NPN open-collector output configuration and is TTI/LST TL compatible, highlighting its ease of use and versatility.

[Learn More]

LR 9 Click

0

LR 9 Click is a compact add-on board designed for ultra-long-range spread spectrum communication tasks within the LPWAN domain. This board is based on the RA-08, a LoRaWAN module from Ai-Thinker Technology, featuring the ASR6601 system-on-chip (SoC) that combines RF transceivers, modems, and a 32-bit RISC microcontroller (MCU). This module excels with its support for LoRa and (G)FSK modulation, a frequency range of 410MHz to 525MHz, and embedded storage of 128KB FLASH and 16KB SRAM, ensuring robust and versatile communication capabilities. Moreover, it's equipped with UART and I2C interfaces for easy programming and integration and an SMA antenna connector for enhanced connectivity.

[Learn More]

Barcode 2 Click

0

Barcode 2 Click is an adapter add-on board that contains a computerized image recognition system that is compliant with a wide range of different 1D and 2D barcode protocols.

[Learn More]