We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.16
mikroSDK Library: 2.0.0.0
Category: Magnetic
Downloaded: 168 times
Not followed.
License: MIT license
AMR Angle Click is a compact add-on board containing an anisotropic magnetoresistive measurement solution ideal for either angle or linear position measurements.
Do you want to subscribe in order to receive notifications regarding "AMR Angle Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "AMR Angle Click" changes.
Do you want to report abuse regarding "AMR Angle Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4432_amr_angle_click.zip [445.39KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
AMR Angle Click is a compact add-on board containing an anisotropic magnetoresistive measurement solution ideal for either angle or linear position measurements. This board features the ADA4571, an AMR sensor with clean and amplified cosine and sine output signals related to a rotating magnetic field angle from Analog Devices.
We provide a library for the AMRAngle Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
This library contains API for AMRAngle Click driver.
amrangle_cfg_setup
Config Object Initialization function.
void amrangle_cfg_setup ( amrangle_cfg_t *cfg, uint8_t sel_toolchain );
amrangle_init
Initialization function.
AMRANGLE_RETVAL amrangle_init ( amrangle_t *ctx, amrangle_cfg_t *cfg );
amrangle_default_cfg
Click Default Configuration function.
void amrangle_default_cfg ( amrangle_t *ctx );
amrangle_angle_read
This function reads an angle in degrees.
float amrangle_angle_read ( amrangle_t *ctx );
amrangle_read_vtp_temp
This function returns calculated temperature using vtp pin voltage.
float amrangle_read_vtp_temp ( amrangle_t *ctx );
amrangle_gain_control_mode
This function sets the gain control mode pin which is used to compensate the sensor amplitude output for reduction of temperature variation.
void amrangle_gain_control_mode ( amrangle_t *ctx, uint8_t gain_control );
This demo application shows the performance of AMR Angle Click by reading and presenting the temperature and angle results on the UART log.
The demo application is composed of two sections :
Starts up the UART LOG, SPI and ADC drivers. Performs the default settings like setting the adc vref, resolution and gpio pins.
void application_init ( void ) {
log_cfg_t log_cfg; /**< Logger config object. */
amrangle_cfg_t amrangle_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
amrangle_cfg_setup( &amrangle_cfg, AMRANGLE_ARM_TOOLCHAIN ); // Change when switching profile
AMRANGLE_MAP_MIKROBUS( amrangle_cfg, MIKROBUS_1 );
err_t init_flag = amrangle_init( &amrangle, &amrangle_cfg );
if ( init_flag == SPI_MASTER_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
amrangle_default_cfg( &amrangle );
Delay_ms ( 500 );
log_info( &logger, " Application Task " );
}
The application task consists of reading the temperature and angle data from the sensor and sending that data to the UART log every second.
void application_task ( void ) {
temperature_res = amrangle_read_vtp_temp( &amrangle );
angle_res = amrangle_angle_read( &amrangle );
log_printf( &logger, " Temperature: %.2f C\r\n", temperature_res );
log_printf( &logger, " Angle: %.2f degrees\r\n", angle_res );
log_printf( &logger, " --------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.