We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.15
mikroSDK Library: 2.0.0.0
Category: Signal processing
Downloaded: 193 times
Not followed.
License: MIT license
DTMF Decoder Click is a compact add-on board that contains an integrated DTMF receiver with enhanced sensitivity. This board features the MT8870D, a complete DTMF receiver integrating the band-split filter and digital decoder functions from Microchip Technology.
Do you want to subscribe in order to receive notifications regarding "DTMF Decoder Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DTMF Decoder Click" changes.
Do you want to report abuse regarding "DTMF Decoder Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4441_dtmf_decoder_cli.zip [619.35KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DTMF Decoder Click is a compact add-on board that contains an integrated DTMF receiver with enhanced sensitivity. This board features the MT8870D, a complete DTMF receiver integrating the band-split filter and digital decoder functions from Microchip Technology.
We provide a library for the DTMFDecoder Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
This library contains API for DTMFDecoder Click driver.
dtmfdecoder_cfg_setup
Config Object Initialization function.
void dtmfdecoder_cfg_setup ( dtmfdecoder_cfg_t *cfg );
dtmfdecoder_init
Initialization function.
DTMFDECODER_RETVAL dtmfdecoder_init ( dtmfdecoder_t *ctx, dtmfdecoder_cfg_t *cfg );
dtmfdecoder_default_cfg
Click Default Configuration function.
void dtmfdecoder_default_cfg ( dtmfdecoder_t *ctx );
dtmfdecoder_tone_read
This function reads a last registered tone and returns decoded data in character format.
uint8_t dtmfdecoder_tone_read ( dtmfdecoder_t *ctx );
dtmfdecoder_delayed_steering_check
This function checks the state of the StD pin.
uint8_t dtmfdecoder_delayed_steering_check ( dtmfdecoder_t *ctx );
dtmfdecoder_powerdown_off
This function powers up the device and along with the oscillator.
void dtmfdecoder_powerdown_off ( dtmfdecoder_t *ctx );
This example shows the basic tone capture of DTMF frequencies, decoding and representing them on the UART LOG.
The demo application is composed of two sections :
Initializes I2C and UART LOG drivers and powers on the device.
void application_init ( void ) {
log_cfg_t log_cfg; /**< Logger config object. */
dtmfdecoder_cfg_t dtmfdecoder_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dtmfdecoder_cfg_setup( &dtmfdecoder_cfg );
DTMFDECODER_MAP_MIKROBUS( dtmfdecoder_cfg, MIKROBUS_1 );
err_t init_flag = dtmfdecoder_init( &dtmfdecoder, &dtmfdecoder_cfg );
if ( init_flag == I2C_MASTER_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
dtmfdecoder_default_cfg ( &dtmfdecoder );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
}
Checks the delayed steering for incoming tones and decoding them on the UART LOG. Holding the same key will recognize multiple tone generation, the tone register delay constant can be set to adjust the tolerance.
void application_task ( void ) {
uint8_t result;
if ( dtmfdecoder_delayed_steering_check( &dtmfdecoder ) ) {
result = dtmfdecoder_tone_read( &dtmfdecoder );
log_printf( &logger, " Detected key tone:\t%c\r\n", result );
Delay_ms ( tone_register_delay );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.