TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42559 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 214 times

Not followed.

License: MIT license  

DAC 6 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 6 Click" changes.

Do you want to report abuse regarding "DAC 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DAC 6 Click

DAC 6 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.

dac6_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jul 2020.
  • Type : SPI type

Software Support

We provide a library for the Dac6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Dac6 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dac6_cfg_setup ( dac6_cfg_t *cfg );

  • Initialization function.

    DAC6_RETVAL dac6_init ( dac6_t ctx, dac6_cfg_t cfg );

Example key functions :

  • Function is used to set operation mode output channel and level.

    float dac6_set_output ( dac6_t *ctx );

  • Sends 16-bit data to the device's input shift register.

    void dac6_write_data ( dac6_t *ctx, uint16_t wr_data );

Examples Description

DAC 6 Click carries 12-bit buffered Digital-to-Analog Converter. It converts digital value to the corresponding voltage level using external voltage reference.

The demo application is composed of two sections :

Application Init

Initalizes SPI driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dac6_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dac6_cfg_setup( &cfg );
    DAC6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dac6_init( &dac6, &cfg );
}

Application Task

This example shows capabilities of DAC 6 Click by changeing output values from 0 to the maximum output range on all four channels. Output voltage is calculated by using the equation : Vout = Vrefin * (set_out / 4095).


void application_task ( void )
{
    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_A;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  A : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_B;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  B : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_C;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  C : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_D;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  D : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Dac6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ANNA-B412 Click

0

ANNA-B412 Click is a compact add-on board that provides BT/BLE connectivity for any embedded application. This board features the ANNA-B412, a standalone Bluetooth 5.1 low-energy module from u-blox. It is a System-in-Package (SiP) design with pre-flashed u-connectXpress software, which supports Bluetooth LE Serial port service, GATT client and server, Bluetooth beacons, Bluetooth long-range, NFC, and simultaneous peripheral and central roles. The Bluetooth module in LE mode can achieve up to 2Mbps data rates.

[Learn More]

RS232 to I2C Click

0

RS232 to I2C Click is a compact add-on board representing a universal usable RS232 to I2C converter. This board features the ZDU0110RFX, a bridge between a UART port and an I2C bus from Zilog, which at the same time represents the connection between the MCU and the RS232 line driver and receiver, the MAX3232. The ZDU0110RFX provides full-duplex asynchronous communications with a 128 byte FIFO buffer, of which 64 bytes each are allocated to receive and transmit operations. It also contains a 4kbit EEPROM and GPIO with programmable interrupt capability; programmable interrupts and interrupt lines for UART and GPIO notifications.

[Learn More]

TempHum 14 Click

0

Temp & Hum 14 Click is a compact add-on board that contains one of the smallest and most accurate humidity and temperature sensors on the market. This board features the HTU31D, a highly accurate digital relative humidity sensor with temperature output from TE Connectivity. With power consumption down to 3.78μW and accuracy of ±2%RH and ±0.2°C, this Click board™ provides fast response time, precision measurement, low hysteresis, and sustained performance even when exposed to extreme temperature up to 125°C and humidity environments.

[Learn More]