TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140543 times)
  2. FAT32 Library (73026 times)
  3. Network Ethernet Library (58042 times)
  4. USB Device Library (48214 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28987 times)
  9. PID Library (27116 times)
  10. microSD click (26721 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LTE IoT 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: LTE IoT

Downloaded: 228 times

Not followed.

License: MIT license  

LTE IoT 8 Click is a compact add-on board that contains a low-power solution for LTE and NB-IoT connectivity. This board features the SKY66430-11, a multi-band multi-chip System-in-Package (SiP) supporting 5G Massive IoT (LTE-M/NB-IoT) platforms from Skyworks Solutions and Sequans Communications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LTE IoT 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LTE IoT 8 Click" changes.

Do you want to report abuse regarding "LTE IoT 8 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LTE IoT 8 Click

LTE IoT 8 Click is a compact add-on board that contains a low-power solution for LTE and NB-IoT connectivity. This board features the SKY66430-11, a multi-band multi-chip System-in-Package (SiP) supporting 5G Massive IoT (LTE-M/NB-IoT) platforms from Skyworks Solutions and Sequans Communications.

lte_iot_8_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Apr 2021.
  • Type : UART type

Software Support

We provide a library for the LTEIoT8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for LTEIoT8 Click driver.

Standard key functions :

  • lteiot8_cfg_setup Config Object Initialization function.

    void lteiot8_cfg_setup ( lteiot8_cfg_t *cfg );
  • lteiot8_init Initialization function.

    err_t lteiot8_init ( lteiot8_t *ctx, lteiot8_cfg_t *cfg );
  • lteiot8_default_cfg Click Default Configuration function.

    err_t lteiot8_default_cfg ( lteiot8_t *ctx );

Example key functions :

  • lteiot8_send_cmd Send command function.

    void lteiot8_send_cmd ( lteiot8_t *ctx, char *cmd );
  • lteiot8_set_sim_apn Set SIM APN.

    void lteiot8_set_sim_apn ( lteiot8_t *ctx, char *sim_apn );
  • lteiot8_send_text_message Send SMS message to number in text mode.

    void lteiot8_send_text_message ( lteiot8_t *ctx, char *phone_number, char *message_content );

Example Description

Application example shows device capability to connect network and send SMS messages using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module and test communication.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    lteiot8_cfg_t lteiot8_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    lteiot8_cfg_setup( &lteiot8_cfg );
    LTEIOT8_MAP_MIKROBUS( lteiot8_cfg, MIKROBUS_1 );
    err_t init_flag  = lteiot8_init( &lteiot8, &lteiot8_cfg );
    if ( init_flag == UART_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    lteiot8_process();
    lteiot8_clear_app_buf(); 
    app_buf_len = 0;
    app_buf_cnt = 0;

    lteiot8_default_cfg ( &lteiot8 );
    while ( 0 == strstr( app_buf, LTEIOT8_RSP_SYSTART ) )
    {
        lteiot8_process();
    }

    //Check communication
    lteiot8_send_cmd( &lteiot8, "AT" );
    error_flag = lteiot8_rsp_check();
    lteiot8_error_check( error_flag );

    log_info( &logger, " Application Task " );
    example_state = LTEIOT8_CONFIGURE_FOR_CONNECTION;
}

Application Task

Application taks is split in few stages:

  • LTEIOT8_CONFIGURE_FOR_CONNECTION: Sets configuration to device to be able to connect to newtork.
  • LTEIOT8_WAIT_FOR_CONNECTION: Checks device response untill device sends information that it is connected to network.
  • LTEIOT8_CHECK_CONNECTION: Checks device connection status parameters.
  • LTEIOT8_CONFIGURE_FOR_MESSAGES: Sets configuration to device to send SMS messages.
  • LTEIOT8_MESSAGES: Sends message in selected mode (PDU/TXT).

void application_task ( void ) 
{
    switch ( example_state )
    {
        case LTEIOT8_CONFIGURE_FOR_CONNECTION:
        {
            if ( LTEIOT8_OK == lteiot8_configure_for_connection( ) )
            {
                example_state = LTEIOT8_WAIT_FOR_CONNECTION;
            }
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            break;
        }
        case LTEIOT8_WAIT_FOR_CONNECTION:
        {
            if ( LTEIOT8_OK == lteiot8_check_connection( ) )
            {
                example_state = LTEIOT8_CHECK_CONNECTION;
            }
            break;
        }
        case LTEIOT8_CHECK_CONNECTION:
        {
            if ( LTEIOT8_OK == lteiot8_check_connection_parameters( ) )
            {
                example_state = LTEIOT8_CONFIGURE_FOR_MESSAGES;
            }
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            break;
        }
        case LTEIOT8_CONFIGURE_FOR_MESSAGES:
        {
            if ( LTEIOT8_OK == lteiot8_configure_for_meesages( ) )
            {
                example_state = LTEIOT8_MESSAGES;
            }
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            break;
        }
        case LTEIOT8_MESSAGES:
        {
            lteiot8_send_meesage();
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            break;
        }
        default:
        {
            log_error( &logger, " Example state." );
            break;
        }
    }
}

Note

In order for the example to work, user needs to set the phone number to which he wants to send an SMS, and also will need to set an APN and SMSC of entered SIM card. Enter valid data for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER_TO_MESSAGE.

E.g. SIM_APN "vip.iot", SMSC_ADDRESS_CSCA "\"+381999999\",145", SMSC_ADDRESS_PDU "+381999999\" , PHONE_NUMBER_TO_MESSAGE "+381659999999"

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LTEIoT8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

Angle 4 click

5

Angle 4 click is an angular magnetic rotary sensor, which can be used as a rotary encoder. With the help of the AEAT-8800-Q24, an integrated 10 to 16-bit programmable angular magnetic encoder, the Angle 4 click can sense the magnetic field rotation aligned with the center of the sensor, over the whole range of 360°.

[Learn More]

Flash 6 click

5

The Flash 6 Click based on W25Q128JV (128M-bit) flash memory from Winbond provides a storage solution for systems with limited space, pins and power. The 25Q series offers flexibility and performance well beyond ordinary Serial Flash devices.

[Learn More]

Barometer 5 Click

0

Barometer 5 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the MS5637-02BA03, a high accuracy low voltage barometric and temperature sensor from TE Connectivity Measurement Specialties. The MS5637-02BA03 includes a high-linearity pressure sensor and an ultra-low-power 24-bit ΔΣ ADC with internal factory-calibrated coefficients, providing a precise digital 24-bit pressure and temperature value, and different operation modes allowing the user to optimize for conversion speed and current consumption. It comes with a configurable host interface that supports I2C serial communication and measures pressure in a range from 300mbar up to 1.2bar with an accuracy of ±2mbar over a wide operating temperature range.

[Learn More]