TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Fingerprint 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Adapter

Downloaded: 195 times

Not followed.

License: MIT license  

Fingerprint 3 Click is an adapter Click board™, used to interface a compatible Fingerprint Sensor with Two-Color LED Ring with the host MCU.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Fingerprint 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Fingerprint 3 Click" changes.

Do you want to report abuse regarding "Fingerprint 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Fingerprint 3 Click

Fingerprint 3 Click is an adapter Click board™, used to interface a compatible Fingerprint Sensor with Two-Color LED Ring with the host MCU.

fingerprint3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : UART type

Software Support

We provide a library for the Fingerprint3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fingerprint3 Click driver.

Standard key functions :

  • fingerprint3_cfg_setup Config Object Initialization function.

    void fingerprint3_cfg_setup ( fingerprint3_cfg_t *cfg ); 
  • fingerprint3_init Initialization function.

    err_t fingerprint3_init ( fingerprint3_t *ctx, fingerprint3_cfg_t *cfg );
  • fingerprint3_set_config Set config function.

    uint8_t fingerprint3_set_config ( fingerprint3_t *ctx, uint32_t addr, uint32_t pass );

Example key functions :

  • fingerprint3_take_image Take image function.

    uint8_t fingerprint3_take_image ( fingerprint3_t *ctx );
  • fingerprint3_aura_control Aura LED control function.

    uint8_t fingerprint3_aura_control ( fingerprint3_t *ctx, uint8_t control, uint8_t speed, uint8_t color, uint8_t times );
  • fingerprint3_finger_indicator Finger indicator function.

    uint8_t fingerprint3_finger_indicator ( fingerprint3_t *ctx );

Examples Description

This example reads and processes data from Fingerprint 3 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver, configures the sensor, and enrolls fingerprints.


void application_init ( void )
{
    log_cfg_t log_cfg;
    fingerprint3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.
    fingerprint3_cfg_setup( &cfg );
    FINGERPRINT3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    err_t init_flag = fingerprint3_init( &fingerprint3, &cfg );
    if ( init_flag == UART_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 100 );

    error_check = fingerprint3_set_config ( &fingerprint3, FINGERPRINT3_DEFAULT_ADDRESS, 
                                                           FINGERPRINT3_DEFAULT_PASSWORD );
    display_error( "Set Config" );
    Delay_ms ( 500 );

    error_check = fingerprint3_soft_reset ( &fingerprint3 );
    display_error( "Soft Reset" );
    Delay_ms ( 500 );

    error_check = fingerprint3_check_sensor ( &fingerprint3 );
    display_error( "Check Sensor" );
    Delay_ms ( 500 );

    error_check = fingerprint3_empty_library ( &fingerprint3 );
    display_error( "Empty the Library" );
    Delay_ms ( 500 );

    uint8_t cnt = 0; 
    do 
    {
        log_printf( &logger, " >>>  Register fingerprint %u of %u  <<<\r\n", ( uint16_t ) cnt + 1, 
                                                                             ( uint16_t ) NUMBER_OF_FINGERPRINTS );
        log_printf( &logger, "--------------------------------- \r\n" );
        error_check = enroll_finger ( &fingerprint3, LOCATION_IN_LIBRARY + cnt, NUMBER_OF_IMAGES );
        display_error( "Enroll finger" );
        if ( FINGERPRINT3_OK != error_check )
        {
            log_printf( &logger, " Please enroll your fingerprint again.\r\n" );
            log_printf( &logger, "--------------------------------- \r\n" );
        }
        else
        {
            cnt++;
        }
        Delay_ms ( 1000 );
    }
    while ( FINGERPRINT3_OK != error_check || cnt != NUMBER_OF_FINGERPRINTS );
}

Application Task

Takes an image of the finger, then checks if there's a fingerprint in the library that matches the one it has just read. All data is being logged on the USB UART.


void application_task ( void )
{
    search_finger( &fingerprint3 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fingerprint3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

CO 2 Click

0

CO 2 Click is a very accurate, carbon-monoxide-gas-sensor Click board™, equipped with the SPEC amperometric, 3SP CO 1000 gas sensor which electrochemically reacts with the carbon monoxide (CO).

[Learn More]

e Fuse 3 Click

0

eFuse 3 Click is a compact add-on board that contains an electronic eFuse. This board features the NIS6150, a resettable fuse that can significantly enhance the reliability of a USB application from both catastrophic and shutdown failures from ON Semiconductor. It is designed to buffer the load device from the excessive input voltage, which can damage sensitive circuits and protect the input side from reverse currents. It includes an over-voltage clamp circuit that limits the output voltage during transients but doesn’t shut the unit down, allowing the load circuit to continue its operation.

[Learn More]

7x10 G Click

0

7x10 G Click is a LED dot matrix display Click, which can be used to display graphics or letters in a very simple and easy way. The Click board has two LED dot matrix modules with 7x5 stylish, round, dot-like LED elements. These displays produce clean and uniform patterns since the elements are optically isolated from each other and there is no light bleeding between the adjacent LED cells. Additionally, turn-on and turn-off times of the matrix cells are optimized for a clean and fluid display performance, with no flickering or lag.

[Learn More]