We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.14
mikroSDK Library: 2.0.0.0
Category: Pressure
Downloaded: 201 times
Not followed.
License: MIT license
Air Flow Click is a compact add-on board that contains a flow-based 2-in-1 differential pressure sensor. This board features the LHDULTRAM012UB3, LHD ULTRA series micro-flow differential pressure sensor from TE Connectivity Measurement Specialties.
Do you want to subscribe in order to receive notifications regarding "Air Flow Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Air Flow Click" changes.
Do you want to report abuse regarding "Air Flow Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4488_air_flow_click.zip [599.58KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Air Flow Click is a compact add-on board that contains a flow-based 2-in-1 differential pressure sensor. This board features the LHDULTRAM012UB3, LHD ULTRA series micro-flow differential pressure sensor from TE Connectivity Measurement Specialties.
We provide a library for the AirFlow Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for AirFlow Click driver.
airflow_cfg_setup
Config Object Initialization function.
void airflow_cfg_setup ( airflow_cfg_t *cfg );
airflow_init
Initialization function.
err_t airflow_init ( airflow_t *ctx, airflow_cfg_t *cfg );
airflow_default_cfg
Click Default Configuration function.
err_t airflow_default_cfg ( airflow_t *ctx );
airflow_reset_device
Reset device.
void airflow_reset_device ( airflow_t *ctx )
airflow_get_differential_pressure
Reads differential pressure.
err_t airflow_get_differential_pressure ( airflow_t *ctx, float *pressure )
airflow_get_atmospheric_pressure
Reads atmospheric pressure and temperature.
err_t airflow_get_atmospheric_pressure ( airflow_t *ctx, float *pressure, float *temperature );
This example showcases ability for device to read differential pressure, atmospheric pressure and ambient temperature.
The demo application is composed of two sections :
Initialize host communication modules (UART, I2C/SPI). Read electric signature data from device and logs it to terminal.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
airflow_cfg_t airflow_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
Delay_ms ( 100 );
log_info( &logger, " Application Init " );
// Click initialization.
airflow_cfg_setup( &airflow_cfg );
AIRFLOW_MAP_MIKROBUS( airflow_cfg, MIKROBUS_1 );
err_t init_flag = airflow_init( &airflow, &airflow_cfg );
if ( ( init_flag == I2C_MASTER_ERROR ) || ( init_flag == SPI_MASTER_ERROR ) )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
airflow_reset_device( &airflow );
if ( airflow_default_cfg ( &airflow ) < 0 )
{
log_error( &logger, " Read" );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
else
{
log_printf( &logger, "Firmware version: %d.%d\r\n", ( int16_t )airflow.major_fw_ver, ( int16_t )airflow.minor_fw_ver );
//part number
log_printf( &logger, "Part number: " );
for ( uint8_t pn = 0; pn < 11; pn++ )
log_printf( &logger, "%c", airflow.part_number[ pn ] );
log_printf( &logger, "\r\n" );
//lot number
log_printf( &logger, "Lot number: " );
for ( uint8_t pn = 0; pn < 7; pn++ )
log_printf( &logger, "%c", airflow.lot_number[ pn ] );
log_printf( &logger, "\r\n" );
//pressure range
log_printf( &logger, "Pressure range: %d\r\n", airflow.pressure_range );
//output type
log_printf( &logger, "Output type: %c\r\n", airflow.output_type );
//scale factor
log_printf( &logger, "Scale factor: %d\r\n", airflow.scale_factor );
//calibration id
log_printf( &logger, "Calibration ID: %s\r\n", airflow.calibration_id );
//week
log_printf( &logger, "Week: %d\r\n", ( int16_t )airflow.week );
//year
log_printf( &logger, "Year: %d\r\n", ( int16_t )airflow.year );
//sequence number
log_printf( &logger, "Sequence number: %d\r\n", airflow.sequence_number );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_info( &logger, " Application Task " );
}
Reads differential pressure in Pa, atmospheric pressure in mBar and ambient temperature in C every 500ms and logs read data.
void application_task ( void )
{
float pressure_data, temperature_data;
airflow_get_differential_pressure( &airflow, &pressure_data );
log_printf( &logger, "Differential pressure[Pa]: %.2f\r\n", pressure_data );
airflow_get_atmospheric_pressure( &airflow, &pressure_data, &temperature_data );
log_printf( &logger, "Atmospheric pressure[mBar]: %.2f\r\nTemperature[degC]: %.2f\r\n", pressure_data, temperature_data );
log_printf( &logger, "***********************************************************\r\n" );
Delay_ms ( 500 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.