TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141265 times)
  2. FAT32 Library (74085 times)
  3. Network Ethernet Library (58713 times)
  4. USB Device Library (48820 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29650 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UT-M 7-SEG R Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 292 times

Not followed.

License: MIT license  

UT-M 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UT-M 7-SEG R Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UT-M 7-SEG R Click" changes.

Do you want to report abuse regarding "UT-M 7-SEG R Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UT-M 7-SEG R Click

UT-M 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

utm7segr_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the UT-M7-SEGR Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for UT-M7-SEGR Click driver.

Standard key functions :

  • utm7segr_cfg_setup Config Object Initialization function.

    void utm7segr_cfg_setup ( utm7segr_cfg_t *cfg );
  • utm7segr_init Initialization function.

    UTM7SEGR_RETVAL utm7segr_init ( utm7segr_t *ctx, utm7segr_cfg_t *cfg );
  • utm7segr_default_cfg Click Default Configuration function.

    void utm7segr_default_cfg ( utm7segr_t *ctx );

Example key functions :

  • utm7segr_generic_write This function writes a desired number of data bytes starting from the selected register by using SPI serial interface.

    err_t utm7segr_generic_write ( utm7segr_t *ctx, uint8_t *data_in );
  • utm7segr_display_state This function turns display on and off.

    void utm7segr_display_state ( utm7segr_t *ctx, uint8_t state ) ;
  • utm7segr_display_number This function is used to show the number on the display.

    err_t utm7segr_display_number ( utm7segr_t *ctx, uint8_t number, uint8_t dot_pos );

Example Description

The demo application shows basic usage of the UT-M 7-SEG display.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.


void application_init ( void ) {
    log_cfg_t log_cfg;            /**< Logger config object. */
    utm7segr_cfg_t utm7segr_cfg;  /**< Click config object.  */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    // Click initialization.

    utm7segr_cfg_setup( &utm7segr_cfg );
    UTM7SEGR_MAP_MIKROBUS( utm7segr_cfg, MIKROBUS_1 );
    err_t init_flag  = utm7segr_init( &utm7segr, &utm7segr_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    utm7segr_default_cfg ( &utm7segr );
    log_info( &logger, " Application Task " );
}

Application Task

Draws numbers from 0 to 99 on the screen.


void application_task ( void ) {  
    log_info( &logger, "---- Number counter ----" );

    for ( uint8_t cnt = 0; cnt < 100; cnt++ ) {
        utm7segr_display_number( &utm7segr, cnt, UTM7SEGR_DOT_LEFT );
        Delay_ms ( 500 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UT-M7-SEGR

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DC Motor 2 Click

0

DC MOTOR 2 Click carries the TB6593FNG driver IC for direct current motors. With two pairs of screw terminals (power supply and outputs), the Click board can drive motors with voltages from 2.5 to 13V (output current of up to 1.2 amps with peaks up to 3.2 amps) . The PWM signal drives the motor while the IN1 and IN2 pins provide binary direction signals that set the direction of the motor (clockwise or counter clockwise), or apply stop or short brake functions.

[Learn More]

Accel 5 click

5

Accel 5 click features an ultra-low power triaxial accelerometer sensor, labeled as the BMA400. This Click board allows linear motion and gravitational force measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three perpendicular axes.

[Learn More]

Accel 7 Click

0

The acceleration sensing is based on the principle of measuring the differential capacitance, which further decreases errors due to manufacturing imperfections, temperature and other environmental influences. The micro-electromechanical sensor (MEMS) is coupled with a very advanced application specific integrated circuit (ASIC), which allows the simplicity of the KXTJ3-1057 design, requiring a low number of additional external components.

[Learn More]