TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141808 times)
  2. FAT32 Library (74944 times)
  3. Network Ethernet Library (59303 times)
  4. USB Device Library (49302 times)
  5. Network WiFi Library (45099 times)
  6. FT800 Library (44661 times)
  7. GSM click (31277 times)
  8. mikroSDK (30207 times)
  9. microSD click (27656 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Alcohol Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 425 times

Not followed.

License: MIT license  

Alcohol Click has a high sensitivity to alcohol and it can be used to detect alcohol in concentrations from 0.04 to 4mg/l.Alcohol Click carries an MQ-3 Semiconductor sensor for alcohol. The Click is designed to run on a 5V power supply only. It communicates with the target microcontroller through the AN pin on the mikroBUS™ line.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Alcohol Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Alcohol Click" changes.

Do you want to report abuse regarding "Alcohol Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Alcohol Click

Alcohol Click has a high sensitivity to alcohol and it can be used to detect alcohol in concentrations from 0.04 to 4mg/l.

Alcohol Click carries an MQ-3 Semiconductor sensor for alcohol. The Click is designed to run on a 5V power supply only. It communicates with the target microcontroller through the AN pin on the mikroBUS™ line.

alcohol_click.png

Click Product page


Click library

  • Author : Jelena Milosavljevic
  • Date : Jun 2021.
  • Type : ADC type

Software Support

We provide a library for the Alcohol Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Alcohol Click driver.

Standard key functions :

  • alcohol_cfg_setup Config Object Initialization function.

    void alcohol_cfg_setup ( alcohol_cfg_t *cfg );
  • alcohol_init Initialization function.

    ALCOHOL_RETVAL alcohol_init ( alcohol_t *ctx, alcohol_cfg_t *cfg );

Example key functions :

  • alcohol_read_an_pin_value This function reads results of AD conversion of the AN pin.

    err_t alcohol_read_an_pin_value ( alcohol_t *ctx, uint16_t *data_out );
  • alcohol_read_an_pin_voltage This function reads results of AD conversion of the AN pin and converts them to proportional voltage level.

    err_t alcohol_read_an_pin_voltage ( alcohol_t *ctx, float *data_out );

Example Description

The demo application shows the reading of the adc values given by the sensors.

The demo application is composed of two sections :

Application Init

Configuring Clicks and log objects.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    alcohol_cfg_t alcohol_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    alcohol_cfg_setup( &alcohol_cfg );
    ALCOHOL_MAP_MIKROBUS( alcohol_cfg, MIKROBUS_1 );
    if ( alcohol_init( &alcohol, &alcohol_cfg ) == ADC_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the adc value and prints in two forms (DEC and HEX).


void application_task ( void ) {
    uint16_t alcohol_an_value = 0;

    if ( alcohol_read_an_pin_value ( &alcohol, &alcohol_an_value ) != ADC_ERROR ) {
        log_printf( &logger, " ADC Value : %u\r\n", alcohol_an_value );
    }

    float alcohol_an_voltage = 0;

    if ( alcohol_read_an_pin_voltage ( &alcohol, &alcohol_an_voltage ) != ADC_ERROR ) {
        log_printf( &logger, " AN Voltage : %.3f[V]\r\n\n", alcohol_an_voltage );
    }

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Alcohol

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

nvSRAM 2 Click

0

nvSRAM 2 Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY14B101Q, a 1Mbit nvSRAM organized as 128K words of 8 bits each with a nonvolatile element in each memory cell from Cypress Semiconductor. The embedded nonvolatile elements incorporate the QuantumTrap technology and provide highly reliable nonvolatile storage of data. Data transfer, initiated by the user through SPI commands, from SRAM to the nonvolatile elements takes place automatically at Power-Down. On the other hand, during the Power-Up, data is restored to the SRAM from the nonvolatile memory. This Click board™ is suitable for all applications that require fast access and high reliability of stored data, and unlimited endurance.

[Learn More]

2x4 RGB Click

0

2x4 RGB Click is a compact add-on board for dynamic and colorful lighting control. This board features an array of 2x4 RGB LEDs (WL-ICLED 1312121320437) from Würth Elektronik, featuring individual control of each red, green, and blue component via an integrated IC and pulse width modulation (PWM) technology. The board also includes an LSF0102 voltage translator, ensuring seamless operation with both 3.3V and 5V logic systems, and supports MIKROE’s innovative Click Snap feature for flexible installation options. With its precise color control and flexible design, 2x4 RGB Click is ideal for applications such as ambient lighting, displays, and visual indicators in various consumer electronics and industrial environments.

[Learn More]

TempHum 10 Click

0

Temp&Hum 10 Click is a smart temperature and humidity sensing Click board™, aimed towards IoT applications, due to its extremely small size and very low power consumption.

[Learn More]