TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136871 times)
  2. FAT32 Library (70000 times)
  3. Network Ethernet Library (55999 times)
  4. USB Device Library (46303 times)
  5. Network WiFi Library (41910 times)
  6. FT800 Library (41206 times)
  7. GSM click (29012 times)
  8. PID Library (26423 times)
  9. mikroSDK (26394 times)
  10. microSD click (25385 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Force 4 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 52 times

Not followed.

License: MIT license  

Force 4 Click is based on HSFPAR003A piezoresistive force sensor from Alpsalpine. This product is a force sensor using the effect of a piezoresistive bridge circuit formed on silicon diaphragm.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Force 4 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Force 4 click" changes.

Do you want to report abuse regarding "Force 4 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Force 4 click

Force 4 Click is based on HSFPAR003A piezoresistive force sensor from Alpsalpine. This product is a force sensor using the effect of a piezoresistive bridge circuit formed on silicon diaphragm.

force4_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : jul 2020.
  • Type : I2C type

Software Support

We provide a library for the Force4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Force4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void force4_cfg_setup ( force4_cfg_t *cfg );

  • Initialization function.

    FORCE4_RETVAL force4_init ( force4_t ctx, force4_cfg_t cfg );

Example key functions :

  • This function reads 12bit ADC data from device.

    uint16_t force4_read_adc ( force4_t *ctx )

Examples Description

This example shows the use of Force 4 Click. It reads 12bit ADC value, using I2C communication, at the interval of one second. The result is represented on the UART terminal.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    force4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    force4_cfg_setup( &cfg );
    FORCE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    force4_init( &force4, &cfg );
    Delay_ms ( 100 );
}

Application Task

It reads 12bit ADC value, using I2C communication, at the interval of one second. The result is represented on the UART terminal.


void application_task ( void )
{
    adc_val = force4_read_adc( &force4 );
    log_printf( &logger, "ADC value: %d\r\n", adc_val );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Force4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

SE051 Plug n Trust click

0

SE051 Plug&Trust Click is a compact add-on board representing a ready-to-use IoT security solution. This board features the SE051C2, an updatable extension of the EdgeLock™ SE050 from NXP Semiconductor, which delivers proven security certified to CC EAL 6+, with AVA_VAN.5up to the OS level. Designed for the latest IoT security requirements, it allows securely storing and provisioning credentials performing cryptographic operations, giving edge-to-cloud security capability right out of the box. It also provides upgrade functionality of the IoT applet while preserving on-device credentials, alongside reconfiguration possibility.

[Learn More]

GPS2 click - Example

0

Simple example which demonstrates usage of the GPS2 Click board with QUECTEL L30 GPS module. It displays a map of the world on the TFT and shows the location of the GPS module on it.

[Learn More]

ATA6563 click

11

ATA6563 click carries the ATA6563 high-speed CAN transceiver. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over UART interface, with additional functionality provided by the AN pin on the mikroBUS line.

[Learn More]