TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139263 times)
  2. FAT32 Library (71752 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47431 times)
  5. Network WiFi Library (43092 times)
  6. FT800 Library (42407 times)
  7. GSM click (29835 times)
  8. mikroSDK (28080 times)
  9. PID Library (26886 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS MAX Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 252 times

Not followed.

License: MIT license  

GNSS MAX Click is a compact add-on board that provides fast positioning capability. This board features the MAX-M10S, an ultra-low-power GNSS receiver for high-performance asset-tracking from u-blox. The MAX-M10S supports the concurrent reception of four GNSS (GPS, GLONASS, Galileo, and BeiDou), which maximizes the position availability, particularly under challenging conditions such as in deep urban canyons. It is built on the u-blox M10 GNSS platform, which provides exceptional sensitivity and acquisition times for all L1 GNSS systems. It also comes with a configurable host interface, and advanced jamming and spoofing detection.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS MAX Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS MAX Click" changes.

Do you want to report abuse regarding "GNSS MAX Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


GNSS MAX Click

GNSS MAX Click is a compact add-on board that provides fast positioning capability. This board features the MAX-M10S, an ultra-low-power GNSS receiver for high-performance asset-tracking from u-blox. The MAX-M10S supports the concurrent reception of four GNSS (GPS, GLONASS, Galileo, and BeiDou), which maximizes the position availability, particularly under challenging conditions such as in deep urban canyons. It is built on the u-blox M10 GNSS platform, which provides exceptional sensitivity and acquisition times for all L1 GNSS systems. It also comes with a configurable host interface, and advanced jamming and spoofing detection.

gnssmax_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jun 2021.
  • Type : UART type

Software Support

We provide a library for the GNSSMAX Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSSMAX Click driver.

Standard key functions :

  • gnssmax_cfg_setup Config Object Initialization function.

    void gnssmax_cfg_setup ( gnssmax_cfg_t *cfg );
  • gnssmax_init Initialization function.

    err_t gnssmax_init ( gnssmax_t *ctx, gnssmax_cfg_t *cfg );
  • gnssmax_default_cfg Click Default Configuration function.

    err_t gnssmax_default_cfg ( gnssmax_t *ctx );

Example key functions :

  • gnssmax_generic_read GNSS MAX data reading function.

    err_t gnssmax_generic_read ( gnssmax_t *ctx, char *data_buf, uint16_t max_len );
  • gnssmax_reset GNSS MAX reset function.

    void gnssmax_reset ( gnssmax_t *ctx );
  • gnssmax_get_pps GNSS MAX reads timestamp pin state.

    uint8_t gnssmax_get_pps ( gnssmax_t *ctx );

Example Description

This example showcases device abillity to read data outputed from device and show it's coordinates and altitude when connected.

The demo application is composed of two sections :

Application Init

Initializes host communication modules, additioaln GPIO's used for control of device and resets device.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnssmax_cfg_t gnssmax_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );
    Delay_ms ( 500 );

    // Click initialization.
    gnssmax_cfg_setup( &gnssmax_cfg );
    GNSSMAX_MAP_MIKROBUS( gnssmax_cfg, MIKROBUS_1 );
    err_t init_flag  = gnssmax_init( &gnssmax, &gnssmax_cfg );
    if ( init_flag == UART_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    gnssmax_default_cfg( &gnssmax );

    last_error_flag = GNSSMAX_OK;
    log_info( &logger, " Application Task " );
    Delay_ms ( 500 );
}

Application Task

Reads data from device and wait's untill device is connected. While not connected it will log '.'. When conneceted and received data for latitude, longitude, and altitude it will log that data parsed from "GNGGA" command.


void application_task ( void ) 
{
    gnssmax_process();

    err_t error_flag = gnssmax_element_parser( RSP_GNGGA, RSP_GNGGA_LATITUDE_ELEMENT, 
                                             latitude_data );

    error_flag |= gnssmax_element_parser(  RSP_GNGGA, RSP_GNGGA_LONGITUDE_ELEMENT, 
                                         longitude_data );

    error_flag |= gnssmax_element_parser(  RSP_GNGGA, RSP_GNGGA_ALTITUDE_ELEMENT, 
                                         altitude_data );


    if ( error_flag == GNSSMAX_OK )
    {
        if ( last_error_flag != GNSSMAX_OK )
        {
            log_printf( &logger, "\r\n" );
        }
        log_printf( &logger, ">Latitude:\r\n - deg: %.2s \r\n - min: %s\r\n", 
                    latitude_data, &latitude_data[ 2 ] );

        log_printf( &logger, ">Longitude:\r\n - deg: %.3s \r\n - min: %s\r\n", 
                    longitude_data, &longitude_data[ 3 ] );

        log_printf( &logger, ">Altitude:\r\n - %sm\r\n", 
                    altitude_data );

        log_printf( &logger, "----------------------------------------\r\n" );
    }
    else if ( error_flag < GNSSMAX_ERROR )
    {
        if ( last_error_flag == GNSSMAX_OK )
        {
            log_printf( &logger, "Waiting for data " );
        }
        log_printf( &logger, "." );
    }

    if ( error_flag != GNSSMAX_ERROR )
    {
        last_error_flag = error_flag;
        gnssmax_clear_app_buf(  );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSSMAX

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

NanoBeacon Click

0

NanoBeacon Click is a compact add-on board that provides a powerful and efficient Bluetooth beacon solution. This board features the IN100, an ultra-low power Bluetooth 5.3 Beacon SoC from InPlay, that sets a new standard in beacon technology. Its ultra-low power consumption, enhanced privacy mode, and three beacon modes offer seamless compatibility with no Bluetooth programming required - plug and play. Its compact design houses two types of built-in memory (4Kb OTP and 4KB SRAM), UART and I2C interfaces, and a hardware security engine.

[Learn More]

Stepper 23 Click

0

Stepper 23 Click is a compact add-on board designed to drive small stepping motors in consumer electronics and industrial equipment applications. This board features the TB67S569FTG, a BiCD constant-current 2-phase bipolar stepping motor driver IC from Toshiba Semiconductor. Key features include a PWM chopper-type 2-phase bipolar drive system, high withstand voltage of up to 34V operating, and a maximum operating current of 1.8A per phase. The board also integrates safety mechanisms such as over-temperature, over-current, and low-supply voltage detection. Additional control is provided by the PCA9555A port expander via I2C, enabling functions like decay and torque modes, step resolution settings, and many more.

[Learn More]

LTE Cat.1 2 Click

0

LTE Cat.1 2 Click (EU) is a compact add-on board that provides your application with complete LTE and VoLTE with CSFB functionalities. This board features the ELS62-E, a single antenna LTE cat.1bis module from Telit.

[Learn More]