TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141865 times)
  2. FAT32 Library (75032 times)
  3. Network Ethernet Library (59340 times)
  4. USB Device Library (49342 times)
  5. Network WiFi Library (45147 times)
  6. FT800 Library (44694 times)
  7. GSM click (31298 times)
  8. mikroSDK (30251 times)
  9. microSD click (27683 times)
  10. PID Library (27572 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DIGI POT 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Digital potentiometer

Downloaded: 389 times

Not followed.

License: MIT license  

DIGI POT 9 Click is a compact add-on board used as a digitally controlled potentiometer. This board features the AD5235, a dual-channel, nonvolatile memory, digitally controlled potentiometer from Analog Devices. The AD5235's versatile programming via an SPI-compatible serial interface allows multiple modes of operation and adjustment. The resistor wiper position is determined by the RDAC register contents, which act as a scratchpad register, allowing unlimited changes of resistance settings. The nominal resistance of the RDAC between terminal A and terminal B (RAB) is 250 kΩ with 1024 positions (10-bit resolution).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DIGI POT 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DIGI POT 9 Click" changes.

Do you want to report abuse regarding "DIGI POT 9 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DIGI POT 9 Click

DIGI POT 9 Click is a compact add-on board used as a digitally controlled potentiometer. This board features the AD5235, a dual-channel, nonvolatile memory, digitally controlled potentiometer from Analog Devices. The AD5235's versatile programming via an SPI-compatible serial interface allows multiple modes of operation and adjustment. The resistor wiper position is determined by the RDAC register contents, which act as a scratchpad register, allowing unlimited changes of resistance settings. The nominal resistance of the RDAC between terminal A and terminal B (RAB) is 250 kΩ with 1024 positions (10-bit resolution).

digipot9_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the DIGIPOT9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DIGIPOT9 Click driver.

Standard key functions :

  • digipot9_cfg_setup Config Object Initialization function.

    void digipot9_cfg_setup ( digipot9_cfg_t *cfg );
  • digipot9_init Initialization function.

    DIGIPOT9_RETVAL digipot9_init ( digipot9_t *ctx, digipot9_cfg_t *cfg );
  • digipot9_default_cfg Click Default Configuration function.

    void digipot9_default_cfg ( digipot9_t *ctx );

Example key functions :

  • digipot9_generic_write This function writes two data bytes to the selected command and address by using SPI serial interface.

    err_t digipot9_generic_write ( digipot9_t *ctx, uint8_t command, uint8_t address, uint16_t data_in );
  • digipot9_generic_read This function reads two data bytes from the selected command and address by using SPI serial interface.

    err_t digipot9_generic_read ( digipot9_t *ctx, uint8_t command, uint8_t address, uint16_t *data_out );
  • digipot9_set_wiper_1 This function sets wiper 1 to desired value.

    err_t digipot9_set_wiper_1 ( digipot9_t *ctx, uint16_t data_in );

Example Description

This example demonstrates the use of DIGI POT 9 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;            /**< Logger config object. */
    digipot9_cfg_t digipot9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    digipot9_cfg_setup( &digipot9_cfg );
    DIGIPOT9_MAP_MIKROBUS( digipot9_cfg, MIKROBUS_1 );
    err_t init_flag  = digipot9_init( &digipot9, &digipot9_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    digipot9_default_cfg ( &digipot9 );
    log_info( &logger, " Application Task " );
}

Application Task

Iterates through the entire wiper range and sets both wipers to the iterator value once per second. The current wiper position will be displayed on the USB UART.


void application_task ( void )
{
    for ( uint16_t cnt = DIGIPOT9_WIPER_ZERO_SCALE; cnt <= DIGIPOT9_WIPER_FULL_SCALE; cnt += 50 )
    {
        digipot9_set_wiper_1 ( &digipot9, cnt );
        digipot9_set_wiper_2 ( &digipot9, cnt );
        log_printf( &logger, " * Wipers position set to %u *\r\n", cnt );

        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DIGIPOT9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE IoT 14 Click

0

LTE IoT 14 Click is a compact add-on board designed for low-latency and low-throughput wireless data communication in IoT applications. This board features the SIM7090G, a multi-band LTE module from SIMCom, supporting Cat-M and Cat-NB communication modes and multi-constellation GNSS (GPS/GLONASS/Galileo/BeiDou) for global connectivity. This board features a UART interface for communication with the host MCU, a USB Type-C port for data transfer and firmware upgrades, as well as visual indicators for real-time network and power status. It also includes test points for easier debugging, dual SMA connectors for LTE and GNSS antennas, and a micro SIM card holder for flexible service provider selection.

[Learn More]

Brushless 25 Click

0

Brushless 25 Click is a compact add-on board that controls brushless DC (three-phase BLDC) motors with any MCU. This board features the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It provides three individually controllable drivers intended to drive a three-phase BLDC motor, solenoids, or other loads.

[Learn More]

M-BUS RF 2 Click

0

M-BUS RF 2 Click is a compact add-on board designed for utility metering and various telemetry applications. This board features the Metis-I (2605041183000), an 868MHz radio module from Würth Elektronik. It integrates an MSP430 microcontroller and a CC1101 RF chip-set to ensure efficient data transmission. Key features include a frequency range of 868.3MHz to 869.525MHz, support for the Wireless M-BUS EN13757-4:2013 and Open Metering System (OMS) standards, and communication capabilities up to 700 meters in clear conditions.

[Learn More]