TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139050 times)
  2. FAT32 Library (71588 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47326 times)
  5. Network WiFi Library (43005 times)
  6. FT800 Library (42295 times)
  7. GSM click (29754 times)
  8. mikroSDK (27873 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 186 times

Not followed.

License: MIT license  

DAC 10 Click is a compact add-on board that contains a fully-featured, highly accurate digital-to-analog converter. This board features the DAC53401, a 10-bit voltage-output smart digital-to-analog converter from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 10 Click" changes.

Do you want to report abuse regarding "DAC 10 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DAC 10 Click

DAC 10 Click is a compact add-on board that contains a fully-featured, highly accurate digital-to-analog converter. This board features the DAC53401, a 10-bit voltage-output smart digital-to-analog converter from Texas Instruments.

dac_10_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : I2C type

Software Support

We provide a library for the DAC10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DAC10 Click driver.

Standard key functions :

  • dac10_cfg_setup Config Object Initialization function.

    void dac10_cfg_setup ( dac10_cfg_t *cfg );
  • dac10_init Initialization function.

    err_t dac10_init ( dac10_t *ctx, dac10_cfg_t *cfg );

Example key functions :

  • dac10_check_device_id This function checks the communication by reading and verifying the device ID.

    err_t dac10_check_device_id ( dac10_t *ctx );
  • dac10_enable_dac This function enables the DAC output.

    err_t dac10_enable_dac ( dac10_t *ctx );
  • dac10_set_output_voltage This function sets the output voltage depending on the vref value defined by the VCC SEL on-board jumper. VREF and Voltage values can be either in Volts or Milivolts.

    err_t dac10_set_output_voltage ( dac10_t *ctx, float vref, float voltage );

Example Description

This example demonstrates the use of DAC 10 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, checks the communication by reading and verifying the device ID, and enables the DAC output.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dac10_cfg_t dac10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dac10_cfg_setup( &dac10_cfg );
    DAC10_MAP_MIKROBUS( dac10_cfg, MIKROBUS_1 );
    err_t init_flag = dac10_init( &dac10, &dac10_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    if ( DAC10_ERROR == dac10_check_device_id ( &dac10 ) ) 
    {
        log_error( &logger, " Check Device ID Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    dac10_enable_dac( &dac10 );
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );
}

Application Task

Changes the output voltage every 2 seconds and logs the voltage value on the USB UART. It will go through the entire voltage range taking into account the number of steps which is defined below.


void application_task ( void )
{
    float step = REFERENCE_VOLTAGE / NUMBER_OF_STEPS;
    float output_voltage = step;
    uint8_t cnt = 0;
    while ( cnt < NUMBER_OF_STEPS )
    {
        dac10_set_output_voltage ( &dac10, REFERENCE_VOLTAGE, output_voltage );
        log_printf( &logger, " DAC output voltage set to %.2f V\r\n", output_voltage );
        output_voltage += step;
        cnt++;
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

Note

Measure the voltage at VCC_SEL jumper and adjust the reference voltage value below for better accuracy.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DAC10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Barometer 8 Click

0

Barometer 8 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the ILPS22QS, an ultra-compact piezoresistive absolute pressure sensor that functions as a digital output barometer from STMicroelectronics. The ILPS22QS comprises a sensing element and an IC chip for signal processing in one package, converts pressure into a 24-bit digital value, and sends the information via a configurable host interface that supports SPI and I2C serial communications. It has a selectable dual full-scale absolute pressure range, up to 1260hPa and 4060hPa, with an accuracy of 0.5hPa over a wide operating temperature range.

[Learn More]

ccRF 3 click

7

ccRF 3 click carries the CC1120 high-performance RF transceiver for narrowband systems from Texas Instruments. The clicks will enable you to add a low-power consumption radio transceiver at 433 MHz frequency. ccRF 3 click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]

Current 5 Click

0

Current 5 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA381, a high-speed current-sense amplifier with an integrated comparator from Texas Instruments. This device has selectable operating modes (transparent or latched) and detects overcurrent conditions by measuring the voltage developed across a current shunt resistor. Then it compares that voltage to a user-defined threshold limit set by the comparator reference potentiometer. The current-shunt monitor can measure differential voltage signals on common-mode voltages that vary from –0.2V to 26V, independent of the supply voltage. This Click board™ delivers higher performance to applications such as test and measurement, load and power supplies monitoring, low-side phase motor control, and many more.

[Learn More]