TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42563 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 192 times

Not followed.

License: MIT license  

LED Driver 10 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the TLC59283, a 16-channel, constant-current sink light-emitting diode (LED) driver with pre-charge FET from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 10 Click" changes.

Do you want to report abuse regarding "LED Driver 10 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LED Driver 10 Click

LED Driver 10 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the TLC59283, a 16-channel, constant-current sink light-emitting diode (LED) driver with pre-charge FET from Texas Instruments.

leddriver10_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the LEDDriver10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LEDDriver10 Click driver.

Standard key functions :

  • leddriver10_cfg_setup This function initializes Click configuration structure to initial values.

    void leddriver10_cfg_setup ( leddriver10_cfg_t *cfg );
  • leddriver10_init This function initializes all necessary pins and peripherals used for this Click board.

    err_t leddriver10_init ( leddriver10_t *ctx, leddriver10_cfg_t *cfg );
  • leddriver10_pwm_start This function starts the PWM module output.

    err_t leddriver10_pwm_start ( leddriver10_t *ctx );

Example key functions :

  • leddriver10_set_channels This function sets all channels to desired value by using SPI serial interface.

    err_t leddriver10_set_channels ( leddriver10_t *ctx, uint16_t ch_mask );
  • leddriver10_read_channels This function reads the current state of all channels by using SPI serial interface.

    err_t leddriver10_read_channels ( leddriver10_t *ctx, uint16_t *ch_mask );
  • leddriver10_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t leddriver10_set_duty_cycle ( leddriver10_t *ctx, float duty_cycle );

Example Description

This example demonstrates the use of LED Driver 10 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, starts the PWM module and enables all channels.


void application_init ( void )
{
    log_cfg_t log_cfg;                  /**< Logger config object. */
    leddriver10_cfg_t leddriver10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.

    leddriver10_cfg_setup( &leddriver10_cfg );
    LEDDRIVER10_MAP_MIKROBUS( leddriver10_cfg, MIKROBUS_1 );
    err_t init_flag  = leddriver10_init( &leddriver10, &leddriver10_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    leddriver10_pwm_start( &leddriver10 );    
    leddriver10_set_channels ( &leddriver10, LEDDRIVER10_ENABLE_ALL_CH );
    log_printf( &logger, " All channels enabled!\r\n" );
    log_printf( &logger, " Dimming the LEDs light...\r\n" );
}

Application Task

Controls the LEDs brightness by changing the PWM duty cycle. The PWM duty cycle percentage will be logged on the USB UART.


void application_task ( void )
{
    static int16_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    leddriver10_set_duty_cycle ( &leddriver10, duty );
    log_printf( &logger, "> Duty: %u%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LEDDriver10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Turbidity Click

0

Turbidity Click is an adapter Click board™, used to interface a compatible turbidity sensor with the host MCU. This board features one 1x3 2.5mm connector suitable for connecting a TSD-10 Turbidity Sensor via an additional 3-wire cable for Turbidity Click specially made for this purpose. It allows users to upgrade their projects with a sensor that senses the cloudiness or haziness of a fluid caused by large numbers of individual particles invisible to the naked eye. This sensor also measures temperature as well as turbidity.

[Learn More]

MCP73871 Click

0

MCP73871 Click is a fully integrated solution for system power delivery and Li-Po/Li-Ion battery charge management.

[Learn More]

Inclinometer Click

0

Inclinometer Click is a compact add-on board that offers best-in-class characteristics for inclination measurements. This board features the SCL3300, a high-performance inclinometer sensor component from Murata.

[Learn More]