TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140950 times)
  2. FAT32 Library (73507 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48505 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43685 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26930 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 12 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 252 times

Not followed.

License: MIT license  

Proximity 12 Click is a compact add-on board that contains a high-performance light and proximity sensing solution. This board features the TMD3719, an optical sensor that integrates ambient light sensing, proximity detection, and flicker detection sensing from AMS-AG.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 12 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 12 Click" changes.

Do you want to report abuse regarding "Proximity 12 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Proximity 12 Click

Proximity 12 Click is a compact add-on board that contains a high-performance light and proximity sensing solution. This board features the TMD3719, an optical sensor that integrates ambient light sensing, proximity detection, and flicker detection sensing from AMS-AG.

proximity12_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : I2C type

Software Support

We provide a library for the Proximity12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Proximity12 Click driver.

Standard key functions :

  • proximity12_cfg_setup Config Object Initialization function.

    void proximity12_cfg_setup ( proximity12_cfg_t *cfg );
  • proximity12_init Initialization function.

    err_t proximity12_init ( proximity12_t *ctx, proximity12_cfg_t *cfg );
  • proximity12_default_cfg Click Default Configuration function.

    err_t proximity12_default_cfg ( proximity12_t *ctx );

Example key functions :

  • proximity12_read_proximity This function reads the raw proximity value measured by the Click board.

    err_t proximity12_read_proximity ( proximity12_t *ctx, uint16_t *prox_data );
  • proximity12_read_als This function reads all als data measured by the Click board.

    err_t proximity12_read_als ( proximity12_t *ctx, proximity12_als_data_t *als );
  • proximity12_set_led_isink This function sets the LEDs sink scaler and current values.

    err_t proximity12_set_led_isink ( proximity12_t *ctx, uint8_t scaler, uint8_t current );

Example Description

This function demonstrates the use of Proximity 12 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;                  /**< Logger config object. */
    proximity12_cfg_t proximity12_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.
    proximity12_cfg_setup( &proximity12_cfg );
    PROXIMITY12_MAP_MIKROBUS( proximity12_cfg, MIKROBUS_1 );
    err_t init_flag = proximity12_init( &proximity12, &proximity12_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 100 );

    init_flag = proximity12_default_cfg ( &proximity12 );
    if ( PROXIMITY12_ERROR == init_flag ) 
    {
        log_error( &logger, " Default Cfg Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the proximity and ALS values and displays the results on the USB UART approximately every 100ms.


void application_task ( void )
{
    uint16_t prox_data = 0;
    proximity12_als_data_t als;
    err_t error_flag = proximity12_read_proximity ( &proximity12, &prox_data );
    error_flag |= proximity12_read_als ( &proximity12, &als );

    if ( PROXIMITY12_OK == error_flag )
    {
        log_printf( &logger, " - Proximity data -\r\n" );
        log_printf( &logger, " Proximity: %u\r\n", prox_data );
        log_printf( &logger, " - ALS data -\r\n" );
        log_printf( &logger, " Clear: %lu - Red: %lu - Green: %lu - Blue: %lu\r\n", als.clear,
                                                                                    als.red,
                                                                                    als.green, 
                                                                                    als.blue );

        log_printf( &logger, " Leakage: %lu - Wideband: %lu - IR1: %lu - IR2: %lu\r\n\r\n", als.leakage,
                                                                                            als.wideband,
                                                                                            als.ir1, 
                                                                                            als.ir2 );
    }
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity12

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

RS232 2 Click

0

The RS232 communication standard is established back in the ‘60s, but thanks to its implementation on a wide range of devices.

[Learn More]

USB-C Sink Click

0

USB-C Sink Click is a compact add-on board that contains a standalone autonomous USB power delivery controller. This board features the STUSB4500, a USB-C sink-only controller compatible with Power-Delivery (PD) from STMicroelectronics. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD capable source device.

[Learn More]

Stepper 13 Click

0

Stepper 13 Click is a bipolar step motor driver. It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. Stepper 13 Click also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

[Learn More]