TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58776 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MUX 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 291 times

Not followed.

License: MIT license  

MUX 4 Click is a compact add-on board that contains a precise analog multiplexing IC. This board features the 74HC4851, 8-channel analog multiplexer/demultiplexer with injection-current effect control from Nexperia USA Inc.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MUX 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MUX 4 Click" changes.

Do you want to report abuse regarding "MUX 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


MUX 4 Click

MUX 4 Click is a compact add-on board that contains a precise analog multiplexing IC. This board features the 74HC4851, 8-channel analog multiplexer/demultiplexer with injection-current effect control from Nexperia USA Inc.

mux_4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2021.
  • Type : ADC type

Software Support

We provide a library for the MUX4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for MUX4 Click driver.

Standard key functions :

  • mux4_cfg_setup Config Object Initialization function.

    void mux4_cfg_setup ( mux4_cfg_t *cfg );
  • mux4_init Initialization function.

    err_t mux4_init ( mux4_t *ctx, mux4_cfg_t *cfg );

Example key functions :

  • mux4_read_an_pin_voltage This function reads results of AD conversion of the AN pin and converts them to proportional voltage level.

    err_t mux4_read_an_pin_voltage ( mux4_t *ctx, float *data_out );
  • mux4_enable_input This function enable or disables analog inputs.

    void mux4_enable_input ( mux4_t *ctx, uint8_t en_state );
  • mux4_select_input This function selects which input channel signal is being forwarded to the AN/EXT pin.

    void mux4_select_input ( mux4_t *ctx, uint8_t input );

Example Description

This example demonstrates the use of MUX 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables analog inputs.


void application_init ( void )
{
    log_cfg_t log_cfg;    /**< Logger config object. */
    mux4_cfg_t mux4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.

    mux4_cfg_setup( &mux4_cfg );
    MUX4_MAP_MIKROBUS( mux4_cfg, MIKROBUS_1 );
    if ( ADC_ERROR == mux4_init( &mux4, &mux4_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    mux4_enable_input( &mux4, MUX4_ENABLE_INPUT );
}

Application Task

Reads the voltage from all input channels and displays the values of each channel on the USB UART approximately every second.


void application_task ( void )
{
    float mux4_an_voltage = 0;

    for ( uint8_t cnt = MUX4_SELECT_INPUT_1; cnt <= MUX4_SELECT_INPUT_8; cnt++ )
    {
        mux4_select_input( &mux4, cnt );
        Delay_ms ( 10 );
        if ( ADC_ERROR != mux4_read_an_pin_voltage ( &mux4, &mux4_an_voltage ) ) 
        {
            log_printf( &logger, " CH%u Voltage : %.3f V\r\n", ( uint16_t ) cnt, mux4_an_voltage );
        }
    }
    log_printf( &logger, " ----------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MUX4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DAC Click

0

DAC Click is an accessory board in mikroBUS form factor. It includes a 12-bit Digital-to-Analog Converter MCP4921 that features an optional 2x buffered output and SPI interface.

[Learn More]

Mikromedia 4 for STM32F7 Capacitive

0

This project contains example for testing modules on Mikromedia 4 for STM32F7 Capacitive.

[Learn More]

Heart Rate 5 click

5

Heart Rate 5 click is the optical biosensor Click board which can be used for the heart-rate monitoring (HRM), as well as the peripheral capillary oxygen saturation monitoring (SpO2).

[Learn More]