TOP Contributors

  1. MIKROE (2781 codes)
  2. Alcides Ramos (377 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139584 times)
  2. FAT32 Library (72044 times)
  3. Network Ethernet Library (57268 times)
  4. USB Device Library (47633 times)
  5. Network WiFi Library (43231 times)
  6. FT800 Library (42569 times)
  7. GSM click (29933 times)
  8. mikroSDK (28313 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ROTARY O Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Rotary encoder

Downloaded: 178 times

Not followed.

License: MIT license  

Rotary Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 orange LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click can be used with either a 3.3V or 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ROTARY O Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ROTARY O Click" changes.

Do you want to report abuse regarding "ROTARY O Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ROTARY O Click

Rotary Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 orange LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click can be used with either a 3.3V or 5V power supply.

rotaryo_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : SPI type

Software Support

We provide a library for the RotaryO Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for RotaryO Click driver.

Standard key functions :

  • rotaryo_cfg_setup Config Object Initialization function.

    void rotaryo_cfg_setup ( rotaryo_cfg_t *cfg );
  • rotaryo_init Initialization function.

    err_t rotaryo_init ( rotaryo_t *ctx, rotaryo_cfg_t *cfg );

Example key functions :

  • rotaryo_generic_transfer ROTARY O data transfer function.

    void rotaryo_generic_transfer ( rotaryo_t *ctx, uint8_t *wr_buf, uint16_t wr_len, uint8_t *rd_buf, uint16_t rd_len );
  • rotaryo_turn_on_led_by_data Function turn on led by data.

    void rotaryo_turn_on_led_by_data ( rotaryo_t *ctx, uint16_t write_data );
  • rotaryo_turn_on_led_by_position Function turn on led by position

    void rotaryo_turn_on_led_by_position ( rotaryo_t *ctx, uint8_t led_position );

Example Description

The demo application controls led on Click with rotory on board

The demo application is composed of two sections :

Application Init

Initializes SPI driver, set initial states, set RST logic high and performs device configuration.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    rotaryo_cfg_t rotaryo_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    rotaryo_cfg_setup( &rotaryo_cfg );
    ROTARYO_MAP_MIKROBUS( rotaryo_cfg, MIKROBUS_1 );
    err_t init_flag  = rotaryo_init( &rotaryo, &rotaryo_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_info( &logger, " Application Task " );

    led_data = 0x0001;
    old_state = 0;
    new_state = 1;
    old__rot_state = 0;
    new_rotate_state = 1;
}

Application Task

Show functionality of Rotary O Click, rotating and turn on/off led's, using the SPI interface


void application_task ( void ) {
    rotaryo_turn_on_led_by_data( &rotaryo, led_data );

//     Push button
    if ( rotaryo_button_push( &rotaryo ) ) {
        new_state = 1;
        if ( new_state == 1 && old_state == 0 ) {
            old_state = 1;
            led_state = ( led_state + 1 ) % 5;
            if ( led_state == 4 ) {
                for ( old_state = 0; old_state < 17; old_state++ ) {
                    rotaryo_turn_on_led_by_data( &rotaryo, 0xAAAA );
                    Delay_ms ( 100 );
                    rotaryo_turn_on_led_by_data( &rotaryo, 0x5555 );
                    Delay_ms ( 100 );
                }

                for ( old_state = 0; old_state < 17; old_state++ ) {
                    rotaryo_turn_on_led_by_position( &rotaryo, old_state );
                    Delay_ms ( 100 );
                }

                led_state = 0;
                led_data = rotaryo_get_led_data( led_state );
            }
            else {
                led_data = rotaryo_get_led_data( led_state );
            }
        }
    }
    else {
        old_state = 0;
    }

//     Rotate Clockwise and CounterClockwise
    if ( rotaryo_get_eca_state( &rotaryo ) == rotaryo_get_ecb_state( &rotaryo ) ) {
        old__rot_state = 0;
        start_status = rotaryo_get_eca_state( &rotaryo ) && rotaryo_get_ecb_state( &rotaryo );
    }
    else {
        new_rotate_state = 1;
        if ( new_rotate_state != old__rot_state ) {
            old__rot_state = 1;
            if ( start_status != rotaryo_get_eca_state( &rotaryo ) ) {
                led_data = ( led_data << 1 ) | ( led_data >> 15 );
            }
            else {
                led_data = ( led_data >> 1 ) | ( led_data << 15 );
            }
        }
    }
}

Note

In order to use all of the clicks functionality, pull down INT pin.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RotaryO

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LR 6 Click

0

LR 6 Click is a compact add-on board designed for ultra-long-distance spread-spectrum communication. This board features the Ra-01S, a LoRa™ wireless radio frequency module from Ai-Thinker Technology, featuring the SX1268 radio chip. This module provides exceptional sensitivity of over -148dBm, a power output of +22dBm, and supports multiple modulation methods, including LoRa™, within the 433MHz frequency band. The board offers robust anti-interference capabilities and low power consumption, making it ideal for applications requiring reliable long-range communication.

[Learn More]

4Dot-Matrix R Click

0

4Dot-Matrix R Click is a display device Click board™, which contains a four-digit dot matrix display module, labeled as SLO2016.

[Learn More]

TempHum 18 Click

0

Temp&Hum 18 Click is a compact add-on board that represents temperature and humidity sensing solutions. This board features the HS3003, a highly accurate, fully calibrated relative humidity and temperature sensor from Renesas. It features proprietary sensor-level protection, ensuring high reliability and long-term stability. Integrated calibration and temperature-compensation logic provides fully corrected RH and temperature values via standard I2C output. No user calibration of the output data is required. The high accuracy, fast measurement response time, and long-term stability make this Click board™ ideal for various temperature and humidity-related applications and a vast number of applications ranging from portable devices to products designed for harsh environments.

[Learn More]