We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.12
mikroSDK Library: 2.0.0.0
Category: Signal processing
Downloaded: 144 times
Not followed.
License: MIT license
Headphone Amp Click is a compact add-on board that contains a stereo headphone amplifier. This board features the LM4811, Boomer® audio power amplifier capable of delivering 105mW per channel with digital volume control from Texas Instruments. The Boomer® amplifiers are specifically designed to provide high-quality output power with a minimal amount of external components. Since the LM4811 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems. It features a digital volume control that sets the amplifier's gain from +12dB to −33dB in 16 discrete steps, in addition to a micro-power consumption Shutdown mode.
Do you want to subscribe in order to receive notifications regarding "Headphone AMP Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Headphone AMP Click" changes.
Do you want to report abuse regarding "Headphone AMP Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4623_headphone_amp_cl.zip [558.36KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Headphone Amp Click is a compact add-on board that contains a stereo headphone amplifier. This board features the LM4811, Boomer® audio power amplifier capable of delivering 105mW per channel with digital volume control from Texas Instruments. The Boomer® amplifiers are specifically designed to provide high-quality output power with a minimal amount of external components. Since the LM4811 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems. It features a digital volume control that sets the amplifier's gain from +12dB to −33dB in 16 discrete steps, in addition to a micro-power consumption Shutdown mode.
We provide a library for the HeadphoneAMP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for HeadphoneAMP Click driver.
headphoneamp_cfg_setup
Config Object Initialization function.
void headphoneamp_cfg_setup ( headphoneamp_cfg_t *cfg );
headphoneamp_init
Initialization function.
HEADPHONEAMP_RETVAL headphoneamp_init ( headphoneamp_t *ctx, headphoneamp_cfg_t *cfg );
headphoneamp_default_cfg
Click Default Configuration function.
void headphoneamp_default_cfg ( headphoneamp_t *ctx );
headphoneamp_set_sound_volume
Headphone AMP set sound volume function.
HEADPHONEAMP_RETVAL headphoneamp_set_sound_volume ( headphoneamp_t *ctx, uint8_t sound_volume );
headphoneamp_volume_up
Headphone AMP set sound volume up function.
HEADPHONEAMP_RETVAL headphoneamp_volume_up ( headphoneamp_t *ctx );
headphoneamp_volume_down
Headphone AMP set sound volume down function.
HEADPHONEAMP_RETVAL headphoneamp_volume_down ( headphoneamp_t *ctx );
This library contains API for the Headphone AMP Click driver. This demo application shows use of a Headphone AMP Click board™.
The demo application is composed of two sections :
Initialization of GPIO module and log UART. After driver initialization the app set default settings, performs power-up sequence, sets a the sound volume of -12 dB.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
headphoneamp_cfg_t headphoneamp_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
headphoneamp_cfg_setup( &headphoneamp_cfg );
HEADPHONEAMP_MAP_MIKROBUS( headphoneamp_cfg, MIKROBUS_1 );
if ( headphoneamp_init( &headphoneamp, &headphoneamp_cfg ) == DIGITAL_OUT_UNSUPPORTED_PIN )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
headphoneamp_default_cfg ( &headphoneamp );
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
log_printf( &logger, "-------------------------\r\n" );
log_printf( &logger, " Performs Power-up\r\n" );
headphoneamp_power_up( &headphoneamp );
Delay_ms ( 100 );
log_printf( &logger, "-------------------------\r\n" );
log_printf( &logger, " Set volume gain -12dB\r\n", HEADPHONEAMP_SOUND_VOLUME_NEG_12_dB );
headphoneamp_set_sound_volume( &headphoneamp, HEADPHONEAMP_SOUND_VOLUME_NEG_12_dB );
log_printf( &logger, "-------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
This is an example that shows the use of Headphone AMP Click board™. The app performs circles the volume from -12 dB to 3 dB back and forth, increase/decrement by 3dB. Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
for ( uint8_t n_cnt = 0; n_cnt < 5; n_cnt++ ) {
log_printf( &logger, " Turning volume up\r\n" );
headphoneamp_volume_up ( &headphoneamp );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf( &logger, "-------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
for ( uint8_t n_cnt = 0; n_cnt < 5; n_cnt++ ) {
log_printf( &logger, " Turning volume down\r\n" );
headphoneamp_volume_down ( &headphoneamp );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf( &logger, "-------------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.